Table of Contents

Section 1 Introduction
- What is E-Mon Energy™? ... 1
- Benefits of E-Mon Energy ... 1
- About This Manual .. 1
- Using This Manual .. 2
- Notation Conventions .. 3
- Usage Conventions ... 3
- Icons in the Margins .. 4
- Related Documentation .. 4
- If You Need Help .. 4

Section 2 System Configuration Overview
- What Are E-Mon Energy System Configurations? ... 1
- What Are the Computer Hardware and Software Requirements? .. 1
- What Are the System Communication Interfaces? .. 1
- Understanding the AMR On-site and Off-site Configuration .. 2
- AMR On-Site Configuration .. 2
- AMR Off-Site Configuration .. 3
- Understanding E-Mon Energy Architecture ... 3

Section 3 System and Software Installation
- How Do I Install and Start Up E-Mon Energy Software? ... 1
- Installing E-Mon Energy ... 1
- How Do I Log into E-Mon Energy? .. 6
- Logging into the System ... 6
- Logging out of the System .. 7
- How Do I Set Up Passwords and Access Rights? ... 8

Section 4 Windows Components and Navigation
- How Do I use E-Mon Energy? .. 1
- What Are the Main Window Components? .. 1
- What Is the Menu Bar? .. 2
- What Is the Device Directory? ... 3
- Device Explorer Button ... 3
- What Are the Window Components? .. 4
- Parent Window ... 4
- Child Windows ... 4
- Pop-Up Dialog Boxes ... 5
- Pop-Up Menus ... 5
- Pop-Up Calendars .. 6
- Messages Dialogs .. 6
- What Are the Interactive Graphs? .. 7
- What Is the E-Mon Energy Database Groups? ... 8
- How Do I use the Panel Navigation and Action Buttons? ... 9
- Navigation Buttons .. 9
- Action Buttons ... 9
Table of Contents

Section 5 Connection Parameters
- What Are Connection Parameters? ... 1
- Direct COM Port... 1
- Modem... 2
- Ethernet.. 2
- What Is the Connection Panel? .. 3
- How Do I Setup a New Connection? ... 4
 - Setting Up a Direct COM Port Connection... 4
 - Setting Up a Modem Connection.. 6
 - Setting Up an Ethernet Connection.. 8
- Can I Have Multiple Connections? ... 9
- Can I Use the Same Connection for Multiple Locations? 9
- Can I Modify or Delete a Connection? .. 9

Section 6 Automatic Meter Reading (AMR) System
- What Is the Automatic Meter Reading (AMR)? ... 1
- How Does the AMR Schedule Work? .. 1
- What Is the AMR Panel? ... 2
- What Are AMR Icons?.. 2
- What Is the Schedule Panel? ... 3
- What Is the TASK Panel? ... 4
- What Is the Server Panel? .. 6
- How Do I Create an AMR Schedule? ... 6
 - Creating an AMR Schedule.. 6
- How do I Set Up the Tasks? .. 8
- How do I Set Up the Server? ... 9

Section 7 Group and Location
- What Are Groups and Locations? ... 1
- Where Do I setup a Group and Location? .. 2
- What Is the Group Panel? ... 2
- How Do I Add New Group? ... 5
 - Adding a New Group... 5
 - Updating the Device Explorer ... 6
 - Selecting the AMR Schedule Call–In (If using with Group Option) 6
 - Selecting the AMR Schedule Call–Out (If using with Group Option) 7
- Can I Customize the Group AMR Schedule? ... 7
 - Customizing the Group AMR Schedule... 7
- What Is the Location Panel? ... 8
- How Do I Setup a New Location? ... 13
 - Setting Up a New Location... 13
 - Updating the Device Explorer ... 14
 - Selecting the AMR Schedule Call–In (If you are not using the Group Option) 15
 - Selecting the AMR Schedule Call–Out (If you are not using the Group Option) 15
- How Do I Modify a Group or Location? ... 15
 - Modifying a Group or Location... 15
- How Do I Select a Location and Scan for Meters? 16
 - Select Location ... 16
 - Scanning for Meters (Devices).. 17
- How Do I Update the Database with the Devices? 18
 - Adding Devices (Meters) to the Database ... 18
Table of Contents

Section 8 Recorder
- What Is a Recorder? ... 1
- What Is the Recorder Panel? .. 1
- How Does the Recorder Communicate? .. 3
- How Does E-Mon Energy™ Recognize a Recorder? 3
 - Communication Setup.. 3
- Can I Set a Password for Recorder? .. 5
- How Do the Recorders Use the AMR Schedule? 5
- Where Do I Set Location and Scan Recorders? 6
- What Is the Access Window? .. 7
- How Do I Scan for the Recorder? ... 7
- What Is Updating the Database? .. 8
- What Is Initializing a Recorder? .. 8
- How Do I Check and Download the Recorder Profile? 9
- How Do I Verify the Recorder? ... 10

Section 9 Meter
- What Is a Meter? .. 1
- What Is a Sub-meter? .. 1
- How Does E-Mon Energy Recognize the Meters? 1
- What Is the Meter Information? .. 1
- Where Do I Enter the Meter Information? 2
- Select Meter Location .. 5
 - Scanning Devices ... 5
- Setting Up the Meter Information ... 7
- Reading the Meter Hardware .. 7

Section 10 Virtual Meter
- What Is a Virtual Meter? .. 1
- Can I Change a Virtual Meter Definition? 1
- How Do I Create a Location for the Virtual Meter? 3
 - Setting Up a Location Tab ... 3
 - Update the Device Explorer .. 4
- How Do I Create a Virtual Recorder? .. 5
 - Creating a Virtual Recorder ... 5
 - Update the Device Explorer ... 5
 - Creating a Virtual Meter .. 6
 - Update the Device Explorer ... 7
- Creating the Virtual Meter Profile .. 8
Table of Contents

Section 11 Customer
Who Is the E-Mon Energy™ Customer? ... 1
What Is the Customer Panel? ... 2
What Is the Customer’s Billing Device? .. 3
How Do I Add a Customer? ... 3
 Adding a Customer .. 3
How Do I Add a Billing Device? .. 5
 Adding a Billing Device .. 5

Section 12 Rate Table and TOU Schedule
What Is a Rate Table and TOU Schedule? ... 1
How Is the Time of Use (TOU) Schedule Used? ... 2
How Does the TOU Schedule Know Daylight Savings? 4
How Do I Create a TOU Schedule and Time Periods? 4
 Create a TOU Schedule Procedures .. 4
How Is the Rate Table Used? ... 6
What Is a Rate Template File? ... 7
How Do I Set Up the Demand Charges? ... 8
What Is the Demand Charge Panel? ... 11
What Is the Other Charges Tab? ... 12

Section 13 Other Features
What Are the Other Features? ... 1
 Load Control .. 1
 Recorder ... 3
 Security .. 4

Section 14 Access Location
What Is the Access Location? ... 1
What Are the Functions? ... 1
 Connection Control .. 1
 Access Location Window Status Bar ... 2
 Read Hardware Functions ... 3
 Read Meters Button .. 3
 Flag Status Button .. 4
 Profile Status Button .. 4
 Version/Time Button ... 6
 Verify Hardware Functions .. 7
 Verify Recorder Button ... 7
 Verify Meters Button ... 8
 Verify AMR Button ... 9
 Setup Hardware Functions ... 10
 Scan Recorder Button ... 10
 Clear Meter Button ... 10
 Initialize Recorder Button ... 11
 Update Database Button .. 11
 Access Database Functions ... 12
 Load Graph Functions ... 13
 Power Graph Functions ... 13
Table of Contents

Section 15 Errors and Flags
- What Are the Error Flags? .. 1
- What Is a Connection Error? .. 1
- What Is a Protocol Error? ... 1
- What Is a Profile Error? .. 1
- What Is a Billing Error? ... 2
- How Do I Resolve Error Flags? ... 2
- What Is a Flag Status? ... 3
- How Do I Check and Clear a Flag Status? ... 4
 - Checking the Flag Status .. 4
 - Clearing a Flag Status .. 4

Section 16 Demand Profile Graph
- What Is the Demand Profile Graph? .. 1
- How Is the Data Stored? .. 2
- What Is the Statistics Table? ... 2
- Can I Export the Interval Data to Other Applications? ... 3
- Can I Change the Graph Display View? .. 3
- Can I See the Data in a Pie Chart? ... 4
- Can I Print the Graph? ... 4
- How Do I Load a Profile and Generate a Demand Profile Graph? .. 5
 - To Load a Profile .. 5
 - Plotting the Graph ... 7
 - Navigating in the Graph .. 8
 - Printing a Graph ... 9
 - Exporting Graph Data .. 10
 - Creating a Pie Chart .. 11
 - Selecting Graph Options .. 12

Section 17 Real-Time Graphs
- What Is the Real-Time Load Factor? .. 1
- What Is the Access Device Explorer? .. 1
- What Is the Statistic Table? ... 2
- What Is the Power Graph .. 3
- Can I Change the Graph Display View? .. 3
- How Do I Load the Real-Time Load Factor Graph? ... 4
 - To Load the Real-Time Load Factor Graph .. 4
 - To Load the Power Graph ... 6
- How Do I Use the Display Options? ... 7
 - How to Use the Display Option ... 7
Section 18 Billing and Report

What Is the Billing Function? ... 1
What Is the Reporting Function? .. 1
Where Do I Begin Creating a Bill Statement? .. 2
How Do Bill Templates (or Forms) Work? ... 4
Where Do I Begin to Generate a Report? ... 7
How Do I Set Up the Automatic Bill Cycle? ... 10
 Setting Up the Automatic Bill Cycle ... 10
 Bill Cycle Definition .. 10
 Auto Bill Cycle Setup ... 11
 Meters Using the Bill Cycle ... 11
 Auto Bill Cycle Scheduler ... 11
How Do I Set Up a Billing Schedule/Template? .. 12
 Setting Up a Billing Schedule/Template ... 12
 Generating Meter Readings/Bills ... 13
Consumption Report(s) ... 14
 Saving or Printing the Bill ... 16
 Bill Period Options ... 17

Section 19 Trouble Shooting

How Do I Resolve a Problem with the E-Mon Energy™ Software? ... 1
Does the Software Support Help Functions? .. 1
 Using the Help... 2

Appendix A Glossary

Appendix B Status Bar Function Codes and Error Flag Codes

Appendix C Reference Guide

Appendix D Billing Templates
Introduction

What is E-Mon Energy™?

E-Mon Energy software package is designed as an energy monitoring system that reads and monitors energy consumption easily and effectively onsite or offsite (via modem or remote access computer).

E-Mon Energy has significant features:

- Operates on most PCs running with Microsoft® Windows® 2000/XP.
- Reads all E-Mon data recorders and meters directly (IDR and Class 3000).
- Virtual meters for adding/subtracting consumption based on real meters.
- Provides a wide variety of data link connections, such as Direct COM Port, Modem, Ethernet, FTP (File Transfer Protocol), Dialup (ISP), File Import, File Import (via a program), with enabling communication substitute.
- Gives the administrator the capability to set up and assign user passwords via the System Administrative Password Tool.
- Multiple meters (different types - electric, gas, water, etc) to the same user, one billing statement; option for detail billing.
- Supports Time-Of-Use (TOU) meter readings.
- Runs a statistical analysis of energy consumption through graphs and charts.

Benefits of E-Mon Energy

E-Mon Energy has a number of key benefits:

- Energy Savings
- Environmental Friendly and Positive Environmental Impact
- Automatic Meter Reading System (watchdog)
- Cost Allocation
- True Tenant Billing
- Multi-Point Metering Aggregation - Virtual Meter and Aggregation
- Metering Flexibility and Performance Contracting
- Additional Revenue Opportunities and Expanded Services

About This Manual

This manual assumes you have a working knowledge of Windows and its operations and menus. It also assumes you have knowledge on using a mouse, opening, closing and saving files.
Introduction

Using This Manual

This manual provides information you need to understand and use E-Mon Energy™. If you have never used E-Mon Energy, read the entire manual to familiarize yourself with its concepts, operation, software and hardware. This guide contains the following information:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>Introduction – contains an overview of E-Mon Energy and how to use this manual. It also discusses notation conventions and calling Technical Support.</td>
</tr>
<tr>
<td>Section 2</td>
<td>System Configuration Overview – provides Software and Hardware Configurations. Briefly describes AMR System Configuration for Onsite and Offsite Monitoring.</td>
</tr>
<tr>
<td>Section 3</td>
<td>Software Installation and System Startup – contains instructions for installing and setting up E-Mon Energy. It also provides instructions for login and logout, administrative and password.</td>
</tr>
<tr>
<td>Section 4</td>
<td>Windows Components and Navigation – provides descriptions on E-Mon Energy GUI buttons, menus, screen layouts and how to use them. It also provides screen shortcuts and diagrams.</td>
</tr>
<tr>
<td>Section 5</td>
<td>Connection Parameters – defines and tells how to set up, add and delete different data links (Connections) for Groups and Locations.</td>
</tr>
<tr>
<td>Section 6</td>
<td>Automatic Meter Reading (AMR) – defines how it works and tells how to create an AMR schedule, task, and assign a server.</td>
</tr>
<tr>
<td>Section 7</td>
<td>Groups and Locations – tells how to create a group, navigate down to the location level, add /delete new locations and meters. It also explains how to get a location.</td>
</tr>
<tr>
<td>Section 8</td>
<td>Recorder – describes how to set up recorder configurations. It also explains how to initialize a recorder.</td>
</tr>
<tr>
<td>Section 9</td>
<td>Meter – describes how to set up meter configurations.</td>
</tr>
<tr>
<td>Section 10</td>
<td>Virtual Meter – defines and tells how to set up a virtual meter profile.</td>
</tr>
<tr>
<td>Section 11</td>
<td>Customer – provides instructions on setting up a customer and assigning devices.</td>
</tr>
<tr>
<td>Section 12</td>
<td>Rate Table and TOU Schedule – describes and tells how to enter different rates, and set up a TOU schedule.</td>
</tr>
<tr>
<td>Section 13</td>
<td>Other Features – tells how to create load control, recorder and security setup file.</td>
</tr>
<tr>
<td>Section 14</td>
<td>Access Location – defines and illustrates the Function and Hardware to Access Groups, along with connection control and panel action buttons.</td>
</tr>
<tr>
<td>Section 15</td>
<td>Errors and Flags – provides data on how to identify potential error flags and clear flags.</td>
</tr>
<tr>
<td>Section 16</td>
<td>Demand Profile Graph – describes how to load the profile and generate a graph. It also explains how to use the Demand Profile Graph features.</td>
</tr>
<tr>
<td>Section 17</td>
<td>Real-Time Graphs – describes how to load a device, graph the device, and start the load monitor. It also explains how to use the power graph and start the power monitor.</td>
</tr>
<tr>
<td>Section 18</td>
<td>Billing and Report – describes the billing and report software process. It tells you how to set up, create, open, and save an automatic and manual billing cycle and then generate a bill. It also discusses creating, opening and saving a report.</td>
</tr>
<tr>
<td>Section 19</td>
<td>Troubleshooting – contains information for resolving errors and issues.</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Start Up Checklist and Forms – provides a checklist and system configuration forms that are required prior to system installation and startup.</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Samples of Bills and Reports – contains examples of bills and E-Mon Energy reports.</td>
</tr>
<tr>
<td>Glossary</td>
<td>The Glossary list contains the word or abbreviation of the short forms used in this guide with the definition.</td>
</tr>
<tr>
<td>Index</td>
<td>The Index is a directory of terms and where they are used.</td>
</tr>
</tbody>
</table>
Notation Conventions

Before working with E-Mon Energy™, familiarize yourself with the notation conventions used in this and all E-Mon software user guides:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Example</th>
<th>What It Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic type</td>
<td>host-name password</td>
<td>A displayed variable or a variable that represents information you must type. Italics are also used for emphasis.</td>
</tr>
<tr>
<td></td>
<td>E-Mon determines the ability to fail over.</td>
<td></td>
</tr>
<tr>
<td>SMALL CAPS</td>
<td>TAB, BUTTON</td>
<td>Keys you press on the keyboard or Screen Buttons to click on.</td>
</tr>
<tr>
<td>Courier font</td>
<td>Terminal Server</td>
<td>Text displayed on a terminal window</td>
</tr>
<tr>
<td>Key + key</td>
<td>alt+tab</td>
<td>Key combinations indicating that you hold down the first key and then press the second key.</td>
</tr>
</tbody>
</table>

Usage Conventions

These additional conventions are in the E-Mon Energy library and will help you correctly identify and enter information into the system:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessing menus and windows</td>
<td>When multiple ways to access menus and windows exist, only the mouse method is documented.</td>
</tr>
<tr>
<td>Required fields</td>
<td>You must type information in a data field unless stated otherwise in the text.</td>
</tr>
<tr>
<td>Commands and filenames</td>
<td>Type commands and filenames exactly as they appear in the instructions.</td>
</tr>
</tbody>
</table>
Icons in the Margins

In addition to the user and notation conventions, you will see a number of icons in the margins of the text. These icons have two purposes:

- They identify another source of information.
- They highlight tasks that should be performed with great care or with the assistance of Technical Support.

<table>
<thead>
<tr>
<th>Helpful Tips</th>
<th>Helpful Tips are placed throughout the manual to assist or aid you in the using of this software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes or Reminders</td>
<td>Notes or Reminders in the Manual.</td>
</tr>
<tr>
<td>Warning</td>
<td>The procedure or actions described can result in a critical system problem if performed incorrectly.</td>
</tr>
<tr>
<td>Call for assistance</td>
<td>Pay particular attention to the associated text.</td>
</tr>
<tr>
<td>Technical Support</td>
<td>Call for assistance from Technical Support.</td>
</tr>
</tbody>
</table>

Related Documentation

The following manuals, installation sheets, catalogs and forms are optional depending on your company’s system configuration. However, all libraries should include the:

- E-Mon Submetering and Energy Monitoring Product Catalog

If You Need Help

99 Washington Street
Melrose, MA 02176
Phone 781-665-1400
Toll Free 1-800-517-8431

Visit us at www.TestEquipmentDepot.com
System Configuration Overview

What Are E-Mon Energy™ System Configurations? 2
What are the Computer Hardware and Software requirements? 2
What are the System Communication Interfaces? 2
Understanding the AMR On-site and Off–site configuration 3
 AMR ON-SITE CONFIGURATION 3
 AMR OFF-SITE CONFIGURATION 4
Understanding E-Mon Energy Architecture 4
What Are E-Mon Energy™ System Configurations?

There are several types of E-Mon Energy system configurations using the hardware, Automatic Meter Reading (AMR) and E-Mon Energy program. Each system configuration depends on the communication interface (onsite or offsite non-dedicated). With any of the AMR system configurations you will be able to read E-Mon KWH and KWH/Demand meters through a compatible PC onsite or offsite. Another common relationship between the configurations is that they all use RS-485 cabling with maximum length of 4000 feet.

What are the Computer Hardware and Software requirements?

E-Mon Energy software operates with a PC with the following minimum specifications:

- CD-ROM Drive
- 128MB RAM, 20GB Hard Drive Space Available
- Color Monitor
- RS-232 Serial Port, Modem, or Ethernet
- Real-Time Clock
- Microsoft Windows 2000 or XP, Service Pack 2 or 3
- E-Mon Energy Version 1.0

Note: Your software configuration would always depend on system speed and memory. E-Mon Energy software will support up to 32767 X 32767 locations.

What are the System Communication Interfaces?

There are several types of E-Mon Energy communication options:

- Direct Serial Port Connection via a E-Mon Energy Key (RS-485 to RS-232)
- MODEM to a Host Computer via a Telephone Line
- Ethernet to a Host Computer 10Base-2 or 10Base-T via an EKM-E (RS-485 to Ethernet)

The RS-485 cable maximum length is 4000 feet total.
Understanding the AMR On-site and Off-site configuration

AMR On-Site Configuration

The AMR On-Site configuration is a direct connect from the computer’s RS-232 serial port or Ethernet port to the recorders or meters via the E-Mon Energy™ Key or EKM-E. The computer and the hardware are all in one location.

The direct serial COM port On-Site Configuration uses the E-Mon Energy Key (RS-232/RS-485) that converts the RS-485 cable to a RS-232 cable for compatibility with computer communication port.

The Ethernet LAN AMR On-Site Configuration uses the EKM-E (Ethernet/RS-485) that converts the RS-485 cable to an Ethernet TCP/IP cable for compatibility with computer LAN port.

The illustrations below display the direct serial COM port AMR on-site configuration.

Figure 2.1. AMR system on-site monitoring.
AMR Off-Site Configuration

The *AMR off-site* configuration can have one E-Mon Energy™ AMR software platform and multiple remote groups and locations using E-Mon Energy Key RM/Telephone modem, or EKM-E/10-baseT or 10-base-T line, or a Wireless E-Mon Energy Key RM/with a cellular modem at 800 MHz or 1900 MHz. The illustrations below display the AMR off-site configuration.

![Figure 2.2. AMR system remote monitoring.](image)

Understanding E-Mon Energy Architecture

The software is a 32-bit Windows driven application designed in object oriented programming tool and utilizes a self-contained database engine without needing to install a separate driver. There are 4 main components:

- Database Engine and Data Entry forms – storing device information and meter data
- Serial Communication – Serial port, Ethernet, etc.
- Graph/Chart – Historical and real-time
- Spreadsheet – Utilize Excel programming
How Do I Install and Startup E-Mon Energy™ Software?

Before installing and setting up the software, you should check and verify that all system and site requirements have been met. It is recommended that any hard installations, such as wiring, communications, and other devices, be installed. If your system requires generating bills, you may also want to obtain the rates and schedules from your local utility.

Within the Appendix section of this manual, we do provide you with a “Startup Checklist and Forms” that we recommend completing, signing, and returning (via mail or fax) prior to E-Mon final transaction and startup.

Note: The initial installation of E-Mon Energy software is often performed by an authorized E-Mon representative.

With completion of system and hardware requirements, you are now ready to install and start up the E-Mon Energy application.

Installing E-Mon Energy

To install E-Mon Energy:

1. Power system up and log into Windows 2000 or Windows XP.
 - Type User Name
 - Type Password
 - Click OK.
2. Obtain E-Mon Energy CDROM that came with your software package.
3. Insert the CD-ROM into the CD-ROM drive and close the door. The system should automatically boot the CD-ROM and the Install Shield Self-extracting EXE dialog box will open.

![Install Shield Self-Extracting EXE](image)

Figure 3.1 - Install Shield Self-Extracting EXE

The Setup window will begin processing the Install Shield.

![Setup Dialog](image)

Figure 3.2 - Setup Dialog

A Wizard opens to welcome you to the E-Mon Energy Setup program.
Click on the NEXT > button. The User Information wizard dialog opens.

To return to the previous dialog window, click on the < BACK button. To exit the Wizard, click on the CANCEL button.

Type in your Name.

Tab down, and type in your Company name.

Click on the NEXT > button. The Choose Destination Location wizard dialog opens.

Note: If you want to install the software to your program directory, E-Mon Energy™ chooses the C:\Program Files\E-Mon Energy as the default location.
8 Click on NEXT > to install in your local C:\Program Files directory or click BROWSE to select a different directory.

9 After selecting the different directory, click NEXT > to continue. The Select Program Folder wizard dialog opens.

10 Type in a Program Folder Name, or select from the Existing Folders in the list box below. (e.g. we have chosen E-Mon\ E-Mon Energy)

11 Click on the NEXT > button to continue. Setup now has sufficient information to begin copying the programs files. The Start Copying Files dialog opens to displays the selected Current Settings.

12 If you are satisfied with the settings, click on the NEXT > button.

13 If you wish to change any of the settings, click on the < BACK button.
E-Mon Energy™ begins installing the software.

A message displays letting you know that setup is creating the icons.

The Setup Complete dialog opens, to indicate Setup has finished copying the files to your computer and is ready to launch your application.

14 Click inside the box, “Yes, Launch the program file”, and click on the FINISH button.
Figure 3.9 - Finish To Complete Setup

Setup launches program and opens the application folder. E-Mon Energy™ program shortcut is displayed.

Figure 3.10 - Setup Launches Program

To verify program installation, open Start\Programs\E-Mon\E-Mon Energy / E-Mon Energy

Figure 3.11 - Program Menu
How Do I log into E-Mon Energy™?

The data within E-Mon Energy can be confidential, and access can be restricted to certain authorized users. If you require a User ID, see your systems administrator prior to logging into software. Your User ID, along with your password, allows you to access and perform certain functions within the software. Your access rights, is set by the administrator.

As a user it is your responsibility to retain the security of your User ID and password by keeping it confidential.

Logging into the System

Logging into the software can be done from the E-Mon desktop icon or through the Windows Start\Programs menu.

To log into E-Mon Energy:

1. Power System up and log into Windows 2000 or Windows XP.
 1. Type User Name
 2. Type Password
 3. Click OK
2. From the Start menu, click START button, Programs\E-Mon\ E-Mon Energy \ E-Mon Energy. The E-Mon Energy opens to display the software version number.

Next, the Login dialog to E-Mon Energy will open. Note: If your E-Mon Energy is not configured to require password access, this screen will not be displayed.

Figure 3. 1 - Login to E-Mon Energy

3. Enter your E-Mon Energy User Name and Password, and click on the OK button. The E-Mon Energy main window opens.
Logging out of the System

To log out from E-Mon Energy:

4. Select Tools\Log Out from the menu bar.

5. A Logout dialog box opens prompting you, “Are you sure you want to logout?” Click YES to logout or click NO button to resume working in E-Mon Energy.
How do I Set Up Passwords and Access Rights?

Setting up users on E-Mon Energy™ system is usually assigned to the Administrator or Owner. These features are not normally assigned to a user. The Administrative Tools can be accessed through the main menu under Tools. Be sure to check the “Enable Password Access” box to activate this feature.

Figure 3.5 - Tools\Administrator drop-down menu

If you are a user on the system, you will not have access to this feature.

If you select Tools/ Administrative Tools, you’ll be prompted with the Administrator Password dialog window.

Figure 3.6 - Enter Administrator Password dialog

If you try to access with the wrong password, the dialog displays, “Invalid Administrator name or password, try again.”

Figure 3.7 - Enter Administrator Password dialog – Wrong Password

Maximum Characters for Password is 18.

The System Password Screen will display. When changing passwords remember to never change the Administrator Rights. The Administrator should always have “FULL” access. The following illustrations display the System Password window and field values.
Drop-Down Fields and Values

- **Database** = None, Read Only, and Full.
- **Hardware** = None, Read Only, Read/Bill, and Full.
- **Billing** = None, Read Only, and Full.
- **Graph** = None, Read Only, and Full.

Remember to click **OK**, to save the new passwords and privileges.

If the user has a **Read Only** access, they can’t access the Database.

<table>
<thead>
<tr>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The user has no access to any function.</td>
</tr>
<tr>
<td>Read Only</td>
<td>Able to view and read hardware and data, but cannot modify.</td>
</tr>
<tr>
<td>Full</td>
<td>Able to view, read, and modify hardware and data, graph data and perform billing.</td>
</tr>
<tr>
<td>Read/Bill</td>
<td>Read and reset meters for billing.</td>
</tr>
</tbody>
</table>

Table 3.1 - Access Rights Description
How do I use E-Mon Energy™?
If you are familiar with most basic Windows applications, this section should be easy for you to follow. Although,
this section explains basic window layout and components, it also describes the customized window components.
It is recommended that you review this section to become familiar with these components prior to using E-Mon
Energy.

What are the Main Window Components?
The E-Mon Energy main window is comprised of several window components. Most of these components are
typical to any window application such as the title and menu bar, minimize and maximize buttons, scroll bars, and a
directory list. The following illustrates each of the window components of the software.

Figure 4.1 - Main Window Components
What is the Menu Bar?

E-Mon Energy™ Menu Bar drop-downs are commands and actions available to the user from the main menu bar. Within this manual, you will find explanations for the different menu choices. The exceptions to these menu items are the File, Hardware, and Bill menus, which become available depending on certain actions that are performed. When there is no activity, they are grayed-out (or dimmed).

Note: The Database drop-down menu is used for opening the Database Group; see “Understanding E-Mon Energy Database Group” within this section.

Figure 4.2 - Main Bar and Drop-Down Cascading Menus

There are several cascading menus in E-Mon Energy. One is under the Tool, next to Export Interval Data to..., which allows you to export data to several file formats. The following figure illustrates an example of the cascading menu.

Figure 4.3 - Cascading Menu
What is the Device Directory?

The Device Directory is located on the left side of the E-Mon Energy™ main window. The directory tree allows the user to click and drill down from a group level, location, and down to an actual meter(s). The directory tree is comprised of the group level, location level, recorder level, and meter level. The following table describes each of these levels.

<table>
<thead>
<tr>
<th>Directory Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Level</td>
<td>Commercial or Residential Name (Group Number\Group Name)</td>
</tr>
<tr>
<td>Location Level</td>
<td>Physical location of the equipment (Location Number\Location Name)</td>
</tr>
<tr>
<td>Recorders</td>
<td>Recorder(s) at the location (Device ID\Recorder Name)</td>
</tr>
<tr>
<td>Meter</td>
<td>Meter(s) in the Recorder (Device ID\Meter Name)</td>
</tr>
</tbody>
</table>

Table 1 - Device Directory

Device Explorer Button

The Device Explorer button is located right beneath the Menu Bar. The Device Explorer button is used to refresh the directory tree after adding/deleting devices from the database.

Figure 4.4 - Device Explorer Button
What are the Window Components?

The E-Mon Energy™ application is designed to use parent (Main Viewing Window) and child (Task Window) windows. The parent window is the main viewing window. Within the parent window are child windows that open when a user selects a menu item. The following figure illustrates an example of the parent and child windows.

![Parent and Child Window](image)

Parent Window

The Parent Window is the primary area within the E-Mon Energy window. The Parent Window is where the child window opens to perform a command or action. Multiple child windows can be open at the same time or sized, minimized or maximized like other window applications. When first opened, there are three child windows minimized within the Parent window at the bottom, AMR Scheduled Task, Access Terminal, and Auto Billing Cycle.

For additional information on the AMR Schedule Task, Access Terminal and Auto Billing Cycle windows, refer to the related sections within this manual.

Child Windows

E-Mon Energy uses child windows to perform many of its tasks. The user can open multiple child windows depending on the menu selections. As an example, the user selects *Database* and *Connection*; a child window opens within the parent window.

The child windows can be resized by clicking on the minimized button or maximize button at the top right-hand corner of the title bar. To minimize and close the window temporarily, the user can click on the control window button and the window will reduce to a title bar within the parent window. The user needs only to click on the maximize button, to open the window again.
Pop-Up Dialog Boxes

Throughout E-Mon Energy™ there are other types of windows that pop up in response to a command. A pop-up dialog or message box provides a status message, instructions, or requests an action before performing an operation. For example, after clicking Initialize recorder button on the Access window, the *Initialize recorder to factory* pop-up dialog opens. The following illustrates an example of the pop-up box.

![Pop-Up Dialog Box](image)

Figure 4.6 - Pop-Up Dialog Box

Pop-Up Menus

Within the E-Mon Energy device directory and child windows, there are *Pop-Up Menus* that display commands. Right click on an item on the Device Explorer or on a Graph to select from the pop-up menu. The following figures are examples of pop-up menus.

![Graph Pop-Up](image)

Figure 4.7 - Graph Pop-Up

Warning

It is not recommended to use the pop-up menu on the graph. Altering these views from here may cause problems with viewing the charted data. We recommend using the Graph\Display Options from the menu bar.

![Device Directory Pop-Up](image)

Figure 4.8 - Device Directory Pop-UP
Pop-Up Calendars

On many of the Database Access Panels are data fields that require the user to enter a month, day, and year. The software provides easy access to pop-up calendars for quick look up and clickable selections to populate these date fields. The following illustrates an example of the pop-up calendar.

![Pop-Up Calendar](image)

Figure 4.9 - Pop-Up Calendar

Messages Dialogs

Throughout E-Mon Energy™ there are warning and error messages that pop up, depending on actions and commands. The following illustrates two examples of these message dialogs.

![Error Message Dialog](image)

Figure 4.10 - Error Message Dialog

![Warning Message Dialog](image)

Figure 4.11 - Warning Message Dialog
What are the Interactive Graphs?

E-Mon Energy™ provides several interactive graphs - the Demand Profile, Power Graphs, and Real-Time Load Profile graphs. The following illustrates two examples of these graphs.

Figure 4.12 - Demand Profile

Figure 4.13 - Power Graph
What are the E-Mon Energy™ Database Groups?

In the E-Mon Energy application, data is grouped into related tasks, which are presented on one or more related panel tabs. A set of panels is referred to as the Database Group, and presented as a series of tabbed panels within the Database window. The name of each panel relates to the Database drop-down menu, which shows the navigation required to get to the panels. Each panel has groups of fields and individual fields. The following illustrations show each of the components on the Database Groups.

![Image of Database Group](image)

Figure 4.14 - Database Group
How do I use the Panel Navigation and Action Buttons?

To display any of the panel tabs in the Database group, the user can click on the tab for that panel, rather than selecting from the Database menu. Above the panel tabs are a set of buttons that serve as the data navigation and function keys.

Navigation Buttons

The first set is the *Panel Navigation* buttons, allowing the user to view and navigate forward and backward between stored data fields for a single panel.

To move to the beginning of the stored data for that panel, click the button. To move back only one, click the button. To move to the next stored data, click the button. To move forward to the last stored data for that panel, click the button. These navigation buttons, also serve as a way to search for stored data for that particular panel task.

Action Buttons

The second set is the *Action* buttons, allowing the user to perform an action such as add, delete, or save a record.

When the Add button is selected, the panel clears all fields and a new record can be added to the selected panel. Clicking the Add button activates this mode.

When a user wants to delete a record, the user selects the record and selects the Delete button and a record is removed from the panel. Clicking the Delete button activates this mode. To save or update a record that has been changed or added, the user selects the Save button. Clicking the Save button activates this mode.
Section 5

Connection Parameters

What are Connection Parameters?

The Connection Parameters are the communication settings needed to connect between the host computer and the recorder(s) and meter(s). These settings are an essential part of the E-Mon Energy™ application. This section will show you how to set up the E-Mon Energy connection parameters and communicate with the actual hardware.

This all begins after you install the data communication device(s) and E-Mon Energy. Setting up these connection parameters is done on the Connection panel of the Database Group. On the connection panel, there are several Data Links to choose from, a Direct COM Port connection by way of a RS-485/RS-232 converter, a TCP/IP (Transmission Control Protocol/Internet Protocol) via an Ethernet connection, or a Modem via a phone-line.

Direct COM Port

The Direct COM Port connection is primarily a single point connection using a RS-232 from the computer into a multi-point communication network using a RS-485 converter (E-Mon Energy Key). The RS-485 converter allows connection to the recorder(s) and meter(s). The RS-232/RS-485 connection is used for an On-Site connection. The following illustrates the Direct COM Port connection.

![Figure 5.1 - Direct COM Port Diagram](image-url)
Modem

The Modem connection uses the RS-232/RS-485 connection, but the converter now includes an external modem (i.e. communication device) to plug into the communicate port of your host computer. A dedicated internal modem can be used, which does not require a RS-232 connection, just a phone line connection. This Data Link type is used for remote connections to and from the recorder(s) and meter(s). See the illustration below.

Figure 5.2 - Modem Diagram

Ethernet

The Ethernet (10-base-2 or 10-base-T) connection uses a 10-base-T or 10-base-2/RS-485 router (EKM-E) at each location that is IP addressable.

Figure 5.3 - Ethernet Diagram
Connection Parameters

At this time, E-Mon Energy™ does not support the following connection types: USB Port, FTP (File-Transfer-Protocol), File Import, File Import via a program and Other.

What is the Connection Panel?

The Database Group provides a Connection panel for managing and creating your connection parameters. The following table describes fields on the Connection panel.

![Connection Panel Image](image)

Figure 5.4 - Connection Panel

<table>
<thead>
<tr>
<th>Panel Group/Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>Panel Group.</td>
</tr>
<tr>
<td>Name*</td>
<td>Type in a unique name to identify your connection. The name can be up to 20 characters. This is a required field.</td>
</tr>
<tr>
<td>Desc.</td>
<td>Type in a description for your connection.</td>
</tr>
<tr>
<td>Communication Parameters</td>
<td>Panel Group.</td>
</tr>
<tr>
<td>Data Link*</td>
<td>Select the type of connection you are using. We will describe the 3 most frequently used connections – direct, modem, and Ethernet. This is a required field. Depending on your data link type, the parameters may or may not be applicable.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a description for your connection.</td>
</tr>
<tr>
<td>Serial Port</td>
<td>Your physical computer serial COM port for Direct connection or Modem connection.</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>The transmission speed for the serial communication.</td>
</tr>
<tr>
<td>Cmd Timeout</td>
<td>Type in the preset time period when the transmission error will occur when E-Mon Energy doesn’t receive a response from the recorder.</td>
</tr>
<tr>
<td>Cmd Retries</td>
<td>Select the number of times E-Mon Energy will retry sending a request to the recorder.</td>
</tr>
<tr>
<td>Dial Timeout</td>
<td>Select the time period for E-Mon Energy to wait to establish the connection.</td>
</tr>
<tr>
<td>Dial Retries</td>
<td>Select the number of times you want E-Mon Energy to redial to establish the connection should the call fail.</td>
</tr>
</tbody>
</table>
How Do I Set Up a New Connection?

Before setting up your connection parameters, make sure you have the following information available.

- Direct COM port – Serial Port, Baud Rate
- Modem – Serial Port, Init String 1, 2, Baud Rate
- Ethernet – IP address, Port No.

Setting up a Direct COM Port Connection

This connection is used for a direct connection to the recorder and meters.

To set up a Direct Com Port connection:

1. From the E-Mon Energy explorer window, click and select **Database\Connection** to display the **Database** window.

 ![Database\Connection Drop down menu](image)

 Figure 5.5 - Database\Connection Drop down menu

2. Click on the Panel Action “+” button to create a new connection.
3. In the **Name** field, type the Name of the connection link.

 Note: This is a required field and must be unique.
4. Tab across, and type a short description in the **Description** field for your connection.

 ![Connection Name](image)

 Figure 5.6 - Direct Comport Connection Name

5. From the **Data Link** drop-down list, select a Direct COM Port.
In the Description field type a description for your connection type (i.e. Serial Port A).

From the Serial Port drop-down, select the serial port; usually COM1 or COM2. COM3 is usually for the internal modem. Consult your computer hardware configuration for the specifics of your computer setup.

From the Baud Rate drop-down, select the correct Baud Rate for your hardware configuration. This baud rate must be the same as the recorder (device) baud rate.

Be sure to check your system, recorder and meter configurations for the correct baud rate.

In the Cmd Timeout field, type in the pre-set time period allowed for E-Mon Energy™ to wait for a response to a command from the recorder. (Default setting is 3000 ms)

From the Cmd Retries drop-down, select the number of times you want E-Mon Energy to retry sending the command to the recorder, should it not get a response after Cmd Timeout. (Default setting is 2)

From the Dial Timeout drop-down, select the pre-set time allowed for E-Mon Energy to wait for a connection before giving up and going to a Dial Retry. (This option is applicable to modems only)

From the Dial Retries drop-down, select the pre-set time allowed for E-Mon Energy to attempt to connect to the remote system. (This option is applicable to modems only)
13 From the *Off-hook Timeout (Min.*)* drop-down, select the time when you want E-Mon Energy™ to drop the line when there are no communication activities between E-Mon Energy and the recorder. (*Default setting is 5 minutes. This option is intended for use with a modem connection.*)

14 Click on “✓” button to accept/save the connection record. The Name field for the connection will become a fixed field and cannot be change.

Setting up a Modem Connection

To set up a *Modem* Connection:

1. From E-Mon Energy explorer window, click and select Database\Connections to display the Database Access window. See Figure
2. Click on the Panel Action “+” button, to create a new connection.
3. In the Name field, type the Name of the connection link. Note: This is a required field and must be unique.
4. Tab across, and type a short description in the Description field for your connection.

Figure 5.11 - Modem Connection Name

5. From the Data Link drop-down list, select *Modem*.

Figure 5.12 - Modem Connection Data Link

6. In the Description field, type a description for the connection type (i.e. Modem A).
7. From the Serial Port drop-down, select the serial port. COM3 is usually for an internal modem. Consult your computer hardware configuration for the specifics of your computer setup.

Figure 5.13 - Connection Serial Port
8. From the **Baud Rate** drop-down, select the correct Baud Rate for your modem configuration. This baud rate must be the same as the recorder (device) baud rate.

![Figure 5.14 - Connection Baud Rate](image)

Be sure to check with your modem manufacturer for the correct baud rate.

9. In the **Cmd Timeout** field, type in the pre-set time period allowed for E-Mon Energy™ to wait for a response to a command from the recorder. *(Default setting is 3000 ms)*

![Figure 5.15 - Command Time Out](image)

10. From the **Cmd Retries** drop-down, select the number of times you want E-Mon Energy to retry sending the command to the recorder, should it not get a response after Cmd Timeout. *(Default setting is 2)*

11. From the **Dial Timeout** drop-down, select the pre-set time allowed for E-Mon Energy to wait for a connection before giving up and going to a Dial Retry. *(Default setting is 60 seconds)*

12. From the **Dial Retries** drop-down, select the pre-set time allowed for E-Mon Energy to attempt to connect to the remote system. *(Default setting is 2)*

13. From the **Off-hook Timeout (Min.)** drop-down select the time when you want E-Mon Energy to drop the line when there are no communication activities between E-Mon Energy and the recorder. *(Default setting is 5 minutes)*

14. In the **Init String 1** field, type in the dialing string to force your modem to comply with the connection. Contact or check with your manufacturer for this information. Repeat this step for **Init String 2** if you have additional settings.

15. Click on “√” button to accept/save the connection record. The **Name** field for the connection will become a fixed field and cannot be changed.

16. From the E-Mon Energy explorer window, click and select Database\Connections to display the Database Access window.
Setting up an Ethernet Connection

To set up an Ethernet connection:

1. From the E-Mon Energy™ explorer window, click and select Database\Connections to display the Database Access window. See Figure
2. Click on the Panel Action “+” button to create a new connection.
3. In the Name field, type the Name of the connection link. Note: This is a required field and must be unique.
4. Tab across, and type a short description in the Description field for your connection.

![Figure 5.16 Connection Name]

5. From the Data Link drop-down list, select Ethernet.

![Figure 5.17 - Ethernet Connect]

6. In the Description field, type a description for your connection type (i.e., MyCompany Network)

You will notice that the Ethernet connection does not use the Serial Port or Baud fields.

7. In the Cmd Timeout field, type in the pre-set time period allowed for E-Mon Energy to wait for a response to a command from the recorder. (Default setting is 3000 ms)

![Figure 5.18 - Command Timeout]

8. From the Cmd Retries drop-down, select the number of times you want E-Mon Energy to retry sending the command to the recorder, should it not get a response after Cmd Timeout. (Default setting is 2)

9. From the Dial Timeout drop-down, select the pre-set time allowed for E-Mon Energy to wait for a connection before giving up and going to a Dial Retry. (This option is applicable to modems only)

10. From the Dial Retries drop-down, select the pre-set time allowed for E-Mon Energy to attempt to connect to the remote system. (This option is applicable to modems only)
11 From the *Off-hook Timeout (Min.)* drop-down, select the time when you want E-Mon Energy™ to drop the line when there are no communication activities between E-Mon Energy and the recorder. *(Default setting is 5 minutes. This option is intended for use with a modem connection.)*

12 Click on “√” button to accept/save the connection record. The Name field for the connection will become a fixed field and cannot be changed.

If at anytime you need assistance, please contact our Technical Support at 1-800-334-3666.

Can I Have Multiple Connections?

No, only one connection type can be assigned to a location.

Can I Use the Same Connection for Multiple Locations?

Yes, you can use the same connection type for multiple locations. Select a location, click on the connection tab and navigate to the connection type, and click on “√” button to accept and save. Once refreshed, the location will display in the *Groups/Location using this Connection* list box.

Can I Modify or Delete a Connection?

If you created a connection and need to change the communication parameter(s), you can make the change by navigating to the connection and making the change, then clicking on “√” button to accept/save the changes.

If you created a connection and no longer need to use it, you can delete it from the database. Prior to deleting, ensure there is no location using this connection by checking the “Groups/Locations using this Connection” list box in the Connection database panel.
What is Automatic Meter Reading (AMR)?

Automatic Meter Reading (also known as AMR) is a data collection module of E-Mon Energy™ that can be programmed to automatically receive incoming calls and/or initiate outgoing calls to the local and/or remote devices. With AMR, you can constantly monitor your meters by setting up a pre-determined schedule based on frequency and time.

The AMR application runs the schedule based on your pre-determined configurations and communicates using any basic phone line (i.e. modem). Creating this type of environment allows you to maximize data collection around the clock and/or during off-peak hours. Once the schedule is set, the scheduler works by itself, and does not require an operator.

This section covers how an AMR schedule works, how to create an AMR (Call-In and Call-Out) schedule, and running/maintaining an AMR schedule.

AMR components include:

- **Schedule** – Configure the call-in/out frequency and time – hourly, daily, weekly, or monthly.
- **Task** – Assign various functions for E-Mon Energy to perform once the connection is established.
- **Server** – Configure the telephone or IP Address number for the recorder to use for calling in.

How does the AMR Schedule Work?

The AMR schedule is created through E-Mon Energy. For AMR Call-in, the schedule is sent to the primary recorder (Device ID 1A). For AMR call-out, the schedule is placed in the AMR Scheduled Task window, which is normally minimized. When E-Mon Energy receives a call and the connection is established, it will first query the Group and Location from the primary recorder. Once received, E-Mon Energy will look in the database for the record. If not found, it prompts the user to add the unknown device into the system. If the record is found, E-Mon Energy looks up the Task that’s been programmed, and performs the various functions automatically. When completed, E-Mon Energy will logoff and issue the “Goodbye” command set to the recorder. See the illustration below.
What is the AMR Panel?

The AMR Panel is where you will create an AMR schedule, task, and server. Select the AMR Schedule from the Database drop-down menu.

![Database AMR schedule menu](image)

Figure 6.2 - Database AMR schedule menu

What are AMR Icons?

The AMR panel is divided into three categories: Schedule, Task, and Server. To the left of the panel group is a box with three icons, each representing a category. The clock icon represents the Schedule; the gear represents Task; and the telephone represents the Server. Clicking on any one of these icons will take you to that particular panel.

![AMR Icons](image)

Figure 6.3 - AMR Icons
What is the Schedule Panel?

The Schedule Panel contains settings for the call-in/call-out frequency and time.

![Figure 6.4 - Schedule Panel](image)

Panel Group/Field	**Description**
Schedule	Panel Group
Name*	Type in the name of your schedule. This is a required field and must be unique. This name will be used in setting up recorders for calling in (call-home). This name will be referenced in the Group and/or Location tabs of the Database window.
Desc.	Description for your schedule.
Frequency*	From this drop-down you can select the time frame you want the schedule to activate – Hourly, Daily, Weekly, or Monthly. This is a required field.
Start Time*	The Start Time criteria changes depending on your selection of the Frequency drop-down field, with the exception of hourly having incremental settings of 15, 30, 45, and 60 minutes.
Daily = hours, minutes, AM/PM and Every 1, 2, 3, … 31 day(s)	
Weekly = hours, minutes, AM/PM and Every 1, 2, 3, … week(s), and every Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.	
Monthly = hours, minutes, AM/PM and Day of the Month(s) or The First, Second, Third, Fourth, Last and Monday, Tuesday, Wednesday, Thursday, Friday of the month(s). Check boxes are provided to choose and select months you want to run the schedule.	
Details | Once the “√” button is pressed, the schedule is printed in an easy-to-read format.
Dial Timeout | From this drop-down, you can select the time period. The application will wait to establish the connection, e.g. modem. If the connection is not successfully established within this time period, E-Mon Energy™ will perform a dial retry.
Dial Retries | From this drop-down, you can select the number of times the application will redial or connect to establish a connection, e.g. modem.
Groups/Location Using this Schedule | **Panel Group.** This list box displays the groups and locations utilizing the current schedule. Note: Prior to deleting a schedule, ensure that there is no location utilizing it. (Make sure this list is emptied).

* = Required field.
What is the TASK Panel?

The Task Panel contains “To-Do List” selections that we can program in E-Mon Energy™ to perform during the AMR call-in or AMR call-out session.

Figure 6.5 - Task Panel

<table>
<thead>
<tr>
<th>Panel Group/Field/Checkbox</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task (To-do-list)</td>
<td></td>
</tr>
<tr>
<td>Name*</td>
<td>A Name for your To-do list. This is a required field and must be unique. This name will be used in setting up recorders for calling in/out. This name will be referenced in the Group and/or Location tabs of the Database window.</td>
</tr>
<tr>
<td>Download</td>
<td>Checked = Download interval data from recorder. Not Checked = No Download. Select “New data only” = E-Mon Energy downloads only new data. Or select “All available data” = E-Mon Energy downloads all data, overwriting the ones in the database. Save data as HHF = Will save data as HHF format (Hand-Held Format). MV-90 normally imports this format for interval data. Save data as CSV = Will save data as CSV format (Comma-Separated Value). Collects data from the table so that it can be put into another table-oriented program (i.e., Excel, or a relational database application).</td>
</tr>
<tr>
<td>Flags</td>
<td>Checked = Will check flags (i.e., status, power failure, tamper alarm, over load) Not Checked = Will not check flags (i.e., status, power failure, tamper alarm, over load) Initialize Recorder = If recorder configurations are corrupted (RAM corruption or real-time clock is bad), E-Mon Energy will initialize the recorder. Not Checked Initialize recorder = Will not initialize the recorder.</td>
</tr>
</tbody>
</table>
Automatic Meter Reading (AMR) System

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Recorder Time** | **Checked** = Will automatically check the date and/or time for the recorder.
| | **Not Checked** = Will not check the date/time for the recorder.
| | **Initialize Recorder** = If recorder configurations are corrupted (RAM corruption or real-time clock is bad), E-Mon Energy™ will initialize the recorder.
| | **Synchronize with PC time** = Will synchronize the recorder date/time with the PC date/time depending on which selection has been made at the recorder. Options include Adjustment Limit, where minimums and maximums are set; as well as Force, where the recorder always synchronizes at a particular time period. |
| **Profile Status** | **Checked** = Will check the profile status.
| | **Not Checked** = Will not check the profile status. |
| **Read Meters** | **Checked** = Will read meter displays (usage accumulation and peak demand).
| | **Not Checked** = Will not read meter displays. |
| **Verify AMR Schedule (Call-in)** | **Checked Box** = Will verify the programmed AMR Schedule.
| | **Not-Checked Box** = Will not verify the programmed AMR Schedule. Note: The AMR Schedule and Server are created on the AMR tab in the Database Access window.
| | **Set Schedule** = Will set the AMR Schedule (Dial-in), if the programmed AMR Schedule is different from the database.
| | **Set Server** = Will set the dial-in number into the recorder.
| | **Set Remote Init String** = Will set the init string into the recorder (e.g., modem init string). |
| **Verify Meter Setup** | **Checked** = Will verify settings programmed into the meter with settings stored in the database.
| | **Not Checked** = Will not verify settings.
| | **Send Meter Setup** = If the meter setup is not the same as the database setup, E-Mon Energy will send the setup to the meter. |
| **Verify Recorder Setup** | **Checked** = Will verify settings programmed into the recorder with settings stored in the database.
| | **Not Checked** = Will not verify settings.
| | **Send Recorder Setup** = If the recorder setup is not the same as the database setup, E-Mon Energy will send the setup to the recorder.
| | **Send Recorder ID&SN** = If the recorder ID and Serial Number is not the same as the database setup, E-Mon Energy will send the setup to the recorder. |
| **Groups/Location Using this Schedule** | **Panel Group**. This list box displays the groups and locations utilizing the current schedule, task, and server. Note: Prior to deleting a task, ensure that there is no location utilizing it. (Make sure this list is emptied). |

* = Required field.
What is the Server Panel?

The Server Panel contains settings for a telephone number or IP address for programming the remote device to call home to E-Mon Energy™.

![AMR Server Panel](image)

Figure 6.6 - AMR Server Panel

<table>
<thead>
<tr>
<th>Group/Field/Checkbox</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>Panel Name</td>
</tr>
<tr>
<td>Name*</td>
<td>Type in the server name. This is a required field and must be unique. This name will be used in setting up recorders for calling in (call-home). This name will be referenced in the Group and/or Location tabs of the Database window.</td>
</tr>
<tr>
<td>Phone No.*</td>
<td>Type in the server phone number for the recorder to call-in. This is the number that the server will call. This is a required field.</td>
</tr>
<tr>
<td>Groups/Location Using this Schedule</td>
<td>Panel Group. This list box displays the groups and locations utilizing the current server. Note: Prior to deleting a server, ensure that there is no location utilizing it. (Make sure this list is emptied).</td>
</tr>
</tbody>
</table>

* = Required field.

How do I Create an AMR Schedule?

With the AMR system, the user can create a schedule to call in or call out, or retrieve data from the meters at any time, day or night. Creating the AMR schedule begins by knowing what group and location you want to assign.

Creating an AMR Schedule

To create an AMR Schedule

1. Select Database\AMR from the drop-down menu or click on the AMR tab in the Database window.

2. Click on the Panel Action “+” button, to create a new connection.
Under **Schedule**, type in a schedule **Name**.

Type in a **Desc.** (Description) for the schedule.

From the **Frequency** drop-down list, select how often you want the schedule to run.

Select **Daily**. Click and type inside the text box to change each time increment or click on the ▲ up ▼ down arrows to adjust the timeframe for each increment.

Select **Dial Timeout** from the drop-down list.

Select **Dial Retries** from the drop-down list.

Next to Every, select ▲ up ▼ down arrows or type in a number for how often on a daily basis you want to run the schedule (e.g., every 1, 2…days).

Click on the “✓” button to accept/save the AMR schedule record.

Note: Depending on Frequency selection, the setup details will change accordingly. Note: Hourly will not have a Start time; it will have 15 minute increments.
How do I Set Up the Tasks?

With AMR, the user can create a schedule for the recorder to call in or call out from a list of “To-do” tasks.

To set up a task list:

1. From the AMR tab, click on the Task icon on the white panel.

2. Click on the Panel Action “+” button, to create a new task.

3. Under the Task (To-do-list), type in a Name for the schedule task.

4. In the To-do group, click and check the to-do items for the schedule. For details on these to-do items, refer to the E-Mon Energy™ User Manual section entitled *(Kantol to provide)*.

5. Click on the “✓” button to accept/save the task record.
How do I Set Up the Server?

With AMR, the user can create a call-in server for the recorder.

To set up a Server

1. Select Database/AMR Schedule from the E-Mon Energy™ menu.

2. Select the Server Icon from the panel.

3. Click on the Panel Action “+” button to create a new server.

4. Type the Name for the Server. (Note: The Name will be referenced from Group and Location.

5. Type the phone number for the recorder to call-in. (Note: This will be used in setting the AMR).

6. Click on the “√” button to accept/save the task record.

7. Click on the Group tab, and ensure that the AMR schedule’s Call-In group fields are selected for the Schedule, Task and Server (i.e. My_Server) you created.

8. Check the “Enable AMR” box.

9. Click on the “√” button to accept/save the task record.
What are Group and Location?

The **Group** is a collection of locations. It is used for organizing the locations so that they’re easier to manage in E-Mon Energy™. For example, when utilizing the automatic scheduler for data collection and/or billing, we can manage a group of locations, rather than every location individually. In turn, setup time is reduced. Each Group may consist of one or more locations. A Group does not store site-specific information, such as a phone number to the recorder. Site-specific information is stored in the Location tab.

The **Location** is the physical location or site of the hardware – data recorder/meter. Within the group are the Location(s) where the recorders and meters are installed. E-Mon Energy essentially uses the Groups and Locations as a site matrix for tracking, connecting, and monitoring the physical equipment. A location must have information on how to connect to the hardware (e.g., COM port, phone number, IP address, etc.).

How does it work? It begins with the software and communication setup. The user enters and assigns a **Group Number** between 1 and 32767. This acts as a tracking system within the software. To each group, the user assigns the Location Number(s) between 0 and 32767. With these parameters established, the user sets the location, connects, scans hardware, and configures the recorder. All this data is then added to a database to set up the Manual or Automatic Meter Reading System (AMR) for the Location’s recorders and meters.

The illustration below displays a group configuration and how it looks in the Device Explorer directory of the software.

![Figure 7.1 - Group And Location Example](image)

This section covers how to create, use, and manage Groups and Locations within E-Mon Energy software.
Where do I setup a Group and Location?

The Group and Location setup is created on the Database window of the software. The Group and Location panels can be accessed from the Database drop-down menu on the menu bar.

From the Group panel, a new group can be added or modified and saved. Similarly, from the Location panel, a new location can be added or modified and saved.

What is the Group Panel?

The Group Panel is where you assign the Group Numbers and set up profile characteristics. These profile characteristics include the assigned group number and name, address, AMR schedule, password security, load control, recording parameters, billing structure and the auto-bill cycle.

If you have already set up an existing AMR schedule, Rate Table, TOU Schedule or Billing Cycle for other Groups, you can select and use those profiles.

The Group Number is required to save and create a position in the Device Explorer. We strongly suggest that you provide a meaningful name for each group. All other field selections can be created later. The following illustration and table describes the fields on the Group Panel.
Figure 7.3 - Database Group Panel

<table>
<thead>
<tr>
<th>Panel Group / Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Number</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Number*</td>
<td>Type in a unique number to identify the Group. The number must be between 1 and 32767. Note: Once refreshed, the Group Number will display in the Device Explorer window. This is a required field.</td>
</tr>
<tr>
<td>Group Name</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Name</td>
<td>Type in a name for the Group. Once refreshed, the Group Name will display next to the group number in the Device Explorer window. This is an optional field, however we suggest you provide a meaningful name.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a brief description of the Group.</td>
</tr>
<tr>
<td>Group Address</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Name 1</td>
<td>Type in the contact name or owner of the Group.</td>
</tr>
<tr>
<td>Name 2</td>
<td>Type in the company name or any other name that may be a second owner or partner.</td>
</tr>
<tr>
<td>Address 1</td>
<td>Type in the address.</td>
</tr>
<tr>
<td>Address 2</td>
<td>Type in the address.</td>
</tr>
<tr>
<td>City</td>
<td>Type in the city.</td>
</tr>
<tr>
<td>State</td>
<td>Type in the state.</td>
</tr>
<tr>
<td>Zip</td>
<td>Type in the 5-digit zip code.</td>
</tr>
<tr>
<td>Phone No.</td>
<td>Type in the 10-digit phone number. This is the contact phone number. The field format is 555-555-5555.</td>
</tr>
<tr>
<td>Fax No</td>
<td>Type in the fax number. The field format is 555-555-5555.</td>
</tr>
</tbody>
</table>
AMR Schedule

Panel Group. This panel is required if you are planning to program the recorder to call-home (E-Mon Energy™). Refer to “AMR” tab for details on how to create Schedule, Task, and Server. Each of the locations within this group has the option of inheriting this setup.

Note: Schedule 2, Task 2, and Server 2 are reserved.

Schedule	Select the AMR schedule name that is created on the Schedule panel of the AMR tab in the Database window. This field will be used to program to the remote hardware via the Set Call-in AMR button in the Access Location window.
Task	Select the Task name that is created on the Task panel of AMR tab in the Database window.
Server	Select the Server name that is created on the Server panel of AMR tab in the Database window. This field will be used to program the remote hardware via the Set Call-in AMR button in the Access Location window.
Event Server	This is a reserved field.
Init String 1	Type in the primary init string to program the remote hardware for setting up the communication module, (e.g., modem).
Init String 2	Type in the secondary init string to program the remote hardware for setting up the communication module, (e.g., modem).
Enable AMR	Check “Enable AMR” to activate this feature for the recorder.
Customize	This button provides access to a dialog box, such as Call Intervals and Time period, for customizing the AMR schedule. It also displays location details for call-in start times.

Security

Panel Group. Each of the locations within this group have the option of inheriting this setup. This is a reserved feature.

| **Security Password** | Select the preset password assigned for that Group. The security setup is used to program the recorder(s) and for software log-on. Refer to the “Others” tab for details. |

Load Control

Panel Group. This panel is required if utilizing the Load Control feature. Refer to “Others” tab for details on how to create Load Control parameters. Each of the locations within this group have the option of inheriting this setup. This is a reserved feature.

| **Primary** | Select a primary Load Control name. Check the “Enable” box to activate this feature. |
| **Secondary** | This is a secondary Load Control name, similar to the primary. Check the “Enable” box to activate this feature. |

Recorder Parameters

Panel Group. If most of the locations in this group are using the same recorder configuration, we highly recommend you utilize this feature. Each of the locations within this group has the option of inheriting this setup.

| **Setup Files** | From this drop-down, you can select a Recorder setup name. Refer to “Others” tab for details. |
How do I Add New Group?

Adding a New Group

To add a new Group:

1. Select **Database\Group** from the drop-down menu or click on the **Group** tab in the **Database** window.

 ![Database\Group drop-down menu](Figure 7.4)

2. Click on the Panel Action“+” button to add a new group.
Figure 7.5 - Group Tab

3. In the **Number** field, type a **Group Number**.

 Note: Must be a unique number between 1 and 32767. This field is required.

4. In the **Name** field, type a **Group Name**. This field is not required; however, we highly recommend you provide a meaningful name up to 12 characters in length.

5. You may want to set other fields, such as AMR Schedule (Call-in or Call-out), Security, Load Control, Recorder Parameters, Billing, and Auto Billing Cycle.

6. At this point, you can click on the “√” button to accept/save the group record or continue to complete the remaining fields.

Updating the Device Explorer

7. Every time you add a new group, location, recorder, or meter, click the **DEVICE EXPLORER** button, to update the device directory. *Note: You will notice that the Group number and Group name have been added to the device directory.*

Selecting the AMR Schedule Call–In (If using with Group Option)

To select an AMR Schedule Call-In:

8. From the **AMR Schedule (Call-In)** group fields, select Schedule Name, Task, and Server from each drop-down list for only Schedule 1. *Note: If you created and saved an AMR schedule, Task, and Server, it should appear in the drop-down list. Refer to “AMR” tab for details. The Event Server is not available.*

9. Check the “Enable AMR” box.
Selecting the AMR Schedule Call-Out (If using with Group Option)

To select an AMR Schedule Call-Out:

1. In the AMR Schedule (Call-out) group fields, select Schedule Name, Task Name from each drop-down lists for only Schedule 1.
2. Check the “Enable AMR” box.
3. Click on the “√” button to accept/save the group record.

Can I Customize the Group AMR Schedule?

Yes, you can customize the default time for AMR call-in intervals. When “Use Group AMR” is checked, E-Mon Energy™ will automatically assign a call-in time for each of the locations in the group. The initial schedule time will be assigned to the first location, and subsequent location times will be offset by E-Mon Energy using the “AMR Call Interval.” If you wish to customize these default times, see the procedure below.

Customizing the Group AMR Schedule

To customize the AMR Schedule Call-Out:

1. To further customize the AMR Schedule group, click on the Customize button. A Customize Group AMR dialog box should open.

Figure 7.6 - Customize Group AMR Schedule (Customize Schedule Tab)

2. From the Customize Schedule tab, under AMR Call Interval, select either “Use system default” or “Select the Interval (hour:minute).”
3. If setting the interval, enter or click on the \[\text{up}\] and \[\text{down}\] arrows for minutes or hours.

Note: Default intervals are based on a single modem. If your computer has multiple modems for auto answer, you may decrease the interval proportionally. Under the AMR Time Period for this Group, to change hrs: min: sec: AM/PM for Ends at:

4. Click and type inside the text box to change each time increment or click on the \[\text{up}\] down arrows to adjust the time frame for each increment.

Note: The Start Time cannot exceed the End Time.

5. To view the Location details, click on the Location Tab.
What is the Location Panel?

The Location panel is where you will assign the Location numbers and set up profile characteristics. These profile characteristics include the assigned location number and name, communication parameters, AMR schedule, password security, load control, recorder parameters, billing structure and the auto-bill cycle.

If you have already set up the AMR schedule, Rate Table, TOU Schedule or Billing Cycle on the Group panel, you can select the Use Group checkboxes next to the feature.

The Location Number is required to create and save a position in the Group. We strongly suggest that you provide a meaningful name for each location. All other fields can be selected later.

On the Location panel is the Communication Parameter group. These group fields can change depending on the type of communication that you are using. The fields that cannot be changed are the Serial Port and Baud; these must be changed from the Connection tab. The figure below illustrates the different connection groups.
To understand the Location Panel, the following illustration and table briefly describe the fields on the panel.

![Database - Location Panel](image)

<table>
<thead>
<tr>
<th>Panel Group / Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Number</td>
<td>Panel Group Type in a unique number to identify the Location. The number must be between 1 and 32767. Note: Once refreshed, the Location number will display in the Device Explorer window. This is a required field.</td>
</tr>
<tr>
<td>Group No.</td>
<td>This is a fixed field, indicating the group in which you are creating the location under. Note: Use the Device Explorer to select the group number under which you wish to create the location.</td>
</tr>
<tr>
<td>Location Name</td>
<td>Panel Group Name Type in a name for the location. Once refreshed, the Location name will display next to the location number in the Device Explorer window. This is an optional field; however, we suggest you provide a meaningful name.</td>
</tr>
<tr>
<td>Desc.</td>
<td>Type in a brief description of the location.</td>
</tr>
<tr>
<td>Location Communication Parameters</td>
<td>Panel Group If you want the location to inherit the Connection setup file, check the “Use Connection Setup” and all communication parameter fields in this panel group will be populated with information from the Connection setup tab.</td>
</tr>
<tr>
<td>Connection</td>
<td>Select the connection name that is created on the Connection tab in the Database window. This is a required field. Depending on the type of connection you're selecting, different fields will be required.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a description for your communication parameter.</td>
</tr>
</tbody>
</table>

* = Required field.
Group and Location

Modem Connection

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone Number*</td>
<td>Type in the phone number of the remote modem.</td>
</tr>
<tr>
<td>Init String 1</td>
<td>Type in the dial string to force your modem to comply with your connection. Refer to your modem documentation.</td>
</tr>
<tr>
<td>Init String 2</td>
<td>Type in the dial string to force your modem to comply with your connection.</td>
</tr>
<tr>
<td>Dial Timeout</td>
<td>From this drop-down, select the time period for E-Mon Energy™ to wait while attempting to establish the connection.</td>
</tr>
<tr>
<td>Dial Retries</td>
<td>From this drop-down, select the number of times you want E-Mon Energy to redial to establish the connection, should the call fail.</td>
</tr>
</tbody>
</table>

* = Required field.

Ethernet Connection

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>Type in the server name.</td>
</tr>
<tr>
<td>IP address*</td>
<td>Type in the IP address for each remote device. E-Mon Energy will establish a TCP/IP connection to the device over the intranet or Internet.</td>
</tr>
<tr>
<td>Port No.*</td>
<td>Type in the Port number of the remote device.</td>
</tr>
</tbody>
</table>

* = Required field.

Apply to All Connection Types

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-hook Timeout (Min)</td>
<td>Select the period of time that will be allowed to lapse with no communication activities. Thereafter, E-Mon Energy will drop the line. If you want the connection to stay on indefinitely, select 0.</td>
</tr>
<tr>
<td>Cmd Timeout</td>
<td>Type in the preset time period when transmission error message will occur, should E-Mon Energy not receive a response from the recorder.</td>
</tr>
<tr>
<td>Cmd Retries</td>
<td>Select the number of times E-Mon Energy will retry sending a request to the recorder.</td>
</tr>
<tr>
<td>Use Connection Setup</td>
<td>If you want the location to inherit the Connection setup file, check the “Use Connection Setup” and all communication parameter fields in this panel group will be populated with information from the Connection setup tab.</td>
</tr>
</tbody>
</table>

AMR Schedule (Call-In or Call-Home)

Panel Group. This panel is required if you are planning to program the recorder to call home. Refer to “AMR” tab for details on how to create Schedule, Task, and Server. Each of the locations within this group have the option of inheriting this setup. Note: Schedule 2, Task 2, and Server 2 are reserved. If you want the location to inherit the Group AMR Schedule, check the “Use Group AMR” and all fields in this panel group will be populated with information from the Group tab. Using this feature allows E-Mon Energy to automatically space the call-in times between each location.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Name</td>
<td>Select the AMR schedule name that is created on the Schedule panel of AMR tab in the Database window. This field will be used to program the remote hardware via the Set Call-in AMR button in the Access window.</td>
</tr>
<tr>
<td>Task</td>
<td>Select the Task name that is created on the Task panel of AMR tab in the Database window.</td>
</tr>
<tr>
<td>Server</td>
<td>Select the Server name that is created on the Server panel of AMR tab in the Database window.</td>
</tr>
</tbody>
</table>
Event Server
This is a reserved field.

Init String 1
Type in the primary init string to program the remote hardware for setting up the communication module, (e.g., modem).

Init String 2
Type in the secondary init string to program the remote hardware for setting up the communication module, (e.g., modem).

Enable AMR
Check “Enable AMR” to activate this feature.

Use Group AMR
If you want the location to inherit the Group AMR Schedule, check the “Use Group AMR” and all fields in this panel group will be populated with information from the Group tab. Using this feature allows E-Mon Energy™ to automatically space the call-in times between each location.

Use Locn Task
When using the “Use Group AMR” option, if you want to overwrite the Group AMR Task with the Location AMR Task, check this box and select the Task name from the drop-down box. This option is useful in programming some of the locations in the group to perform special functions when calling in.

Use Locn Server
When using the “Use Group AMR” option, if you want to overwrite the Group AMR Server with the Location AMR Server, check this box and select the Server name from the drop-down box. This option is useful in configurations where some of the remote sites in the group need to dial a special code to get out side access, (i.e., dialing a ‘9’ first prior to dialing the number).

Security

Panel Group

Password
Select the preset password assigned for that Group. The security setup is used to program the recorder(s) and for software log-on. Refer to the “Others” tab for details.

Use Group
If you want the location to inherit the Group security, check the “Use Group” and the field in this panel group will be populated with information from the Group tab.

Load Control

Panel Group. This panel is required if utilizing the Load Control feature. Refer to “Others” tab for details on how to create Load Control parameters. Each of the locations within this group have the option of inheriting this setup. This is a reserved feature.

Primary
Select a primary Load Control name. Check the “Enable” box to activate this feature.

Secondary
This is a secondary Load Control name, similar to the primary. Check the “Enable” box to activate this feature.

Use Group Load Control
If you want the location to inherit the Group Load Control, check the “Use Group Load Control” and all fields in this panel group will be populated with information from the Group tab.

Recorder Parameters

Panel Group

Setup File
Select a Setup Recorder Parameter that is created on the Other tab, Recorder panel of the Database window.

Use Group
If you want the location to inherit the Group setup file, check the “Use Group” and all fields in this panel group will be populated with information from the Group tab.
Billing

<table>
<thead>
<tr>
<th>Panel Group</th>
<th>Check “Enable Billing” to activate this feature. If you check “Use Group,” the fields in this panel group will be populated with data from the Group tab.</th>
</tr>
</thead>
</table>

TOU

- From this drop-down, you can select a TOU Schedule name that is created on the TOU tab of the Database window. Refer to Rate Table and TOU Schedule sections for details.

Rate

- From this drop-down, you can select a Rate name that is created on the “Rate” tab of the Database window. Refer to Rate Table and TOU Schedule sections for details.

Enable Billing

- Check “Enable Billing” to activate this feature.

Use Group

- If you check “Use Group,” the fields in this panel group will be populated with data from the Group tab.

Auto Billing Cycle

<table>
<thead>
<tr>
<th>Panel Group</th>
<th>If you check “Use Group,” the fields in this panel group will be populated with data from the Group tab.</th>
</tr>
</thead>
</table>

Bill Cycle

- Select a Bill Cycle name that is created on the Bill Cycle tab of the Database window. The Billing Cycle is required to create a billing statement.

Use Group

- If you check “Use Group,” the fields in this panel group will be populated with data from the Group tab.

AMR Schedule (Call-out)

<table>
<thead>
<tr>
<th>Panel Group</th>
<th>This panel is required if you are planning to program E-Mon Energy™ to automatically call the recorder. Refer to “AMR” tab for details on how to create Schedule, Task, and Server. Check the “Use Group AMR” and all fields in this panel group will be populated with information from the Group tab. Using this feature allows E-Mon Energy to automatically space the call-out times to each location.</th>
</tr>
</thead>
</table>

Schedule Name

- Select the AMR schedule name that is created on the AMR tab, Schedule panel of the Database window.

Task Name

- Select the AMR Schedule name that is created on the Schedule panel of the AMR tab in the Database window.

Enable AMR

- Check “Enable AMR” to activate this feature.

Use Group AMR

- If you want the location to inherit the Group AMR Schedule, check the “Use Group AMR” and all fields in this panel group will be populated with information from the Group tab. Using this feature allows E-Mon Energy to automatically space the call-out times to each location.
How do I Set up a New Location?

Setting up a New Location

To set up a new location:

1. Select Database\Location from the drop-down menu or click on the Location tab in the Database window.

![Database Location drop-down menu]

2. From the Device Explorer window, highlight and select the Group Number to add location.
3. Click on the Panel Action “+” button to add a new location.

![Location Tab]

4. In the Number field, type in a Location Number. Location 0 is reserved for the virtual recorders and meters location.

 Note: Must be a unique number between 0 and 32767. This field is required.

5. In the Name field, type a Location Name. This field is not required; however, we highly recommend you provide a meaningful name up to 12 characters in length.
6 Tab down from the **Connection** drop-down list and select a connection name that is created in the Connection tab of the Database.

7 Tab down in the **Description** field. Type a description for your connection.

8 You may want to set other fields, such as AMR Schedule (Call-in or Call-out), Security, Load Control, Recorder Parameters, Billing, and Auto Billing Cycle.

9 At this point, you can click on the “√” button to accept/save the location record or continue to complete the remaining fields.

Updating the Device Explorer

Every time you add a new group, location, recorder, or meter, click the **Device Explorer** button, to update the device directory. *Note: You will notice that the Location number and name has been added to the Group.*

![Device Explorer New Location](image)

Figure 7.11 - Device Explorer New Location
Selecting the AMR Schedule Call–In (If you are not using the Group Option)

Note: If you plan to use the “Use Group AMR” option, check the “Use Group AMR” box and proceed to How to Set a Location and Scan for Meters.

To select an AMR Schedule Call-In Schedule:

1. From the AMR Schedule (Call-In) group fields, select Schedule Name, Task, Server, and Event Server from drop-downs for only Schedule 1.
 Note: If you create and save a new AMR schedule, Task, and Server, it should appear in the drop-down list. Refer to AMR tab for details.

2. Check the “Enable AMR” box.

Selecting the AMR Schedule Call–Out (If you are not using the Group Option)

Note: If you plan to use the “Use Group AMR” option, check the “Use Group AMR” box and proceed to How to Set a Location and Scan for Meters

To select an AMR Schedule Call-In Schedule:

1. In the AMR Schedule (Call-out) group fields, select Schedule Name, Task Name from drop-down for only Schedule 1.

2. Check the “Enable AMR” box.

3. Click on “√” button to accept/save the location record.

How do I Modify a Group or Location?

Modifying a Group or Location

To modify a Group or Location:

1. From the Device Explorer window, highlight and select either the Group Number or Location Number.

 ![Figure 7.12 - Selecting Group Number or Location Number](image)

 Group

 Location

 Figure 7.12 - Selecting Group Number or Location Number

2. With Group or Location Number selected and highlighted, click on the Database drop-down menu and select either group or location. In the following illustration, we selected Group from the drop-down menu.
3 Type in or change the fields you want to modify.
4 At this point, you can click on the “√” button to accept/save the changes to fields.

How do I Select a Location and Scan for Meters?

Select Location

To select location:

1 From E-Mon Energy™ Explorer Window, click and select **Hardware\Set Location** from the drop-down menu. The **Select Location** Dialog opens.

2 From the **Group** drop-down list, select a **Group**.
3 From the **Location** drop-down list, select a **Location** you want to scan and with which you want to communicate.
4 Click on **Set** button. The Access window opens.

Note: The Group and Location displays in the window’s status bar area.
Group and Location

5. Click on the CONNECT button to establish connection and access the Function and Hardware to Access Groups.

Scanning for Meters (Devices)

To scan for Meters (Devices):

6. From the Function group box, click on Setup Hardware.
7. From the Hardware to Access group box, click on All possible.

8. Click on the SCAN RECORDER button. By default, E-Mon Energy™ will start scanning for any new devices starting with IDs of 1A, 1B, … Once the new devices are detected, the grid will display the Recorder ID and the Meter Channel Status (OK, New, Bad….)

9. Once E-Mon Energy scans and moves past the last installed device ID, wait a few seconds and click CANCEL. At this point, it will allow you to update the database.
How do I Update the Database with the Devices?

After complete scanning and system detection of meters, you can now add your devices to the Database.

Adding Devices (Meters) to the Database?

To add Devices to Database:

1. Click on the Update Database button. A dialog box displays with 4 list boxes: New Device, Add to DB, Bad Device, and Delete from DB.

 Note: The “New Device” list box displays all new devices detected during the scan. The Bad devices will display under “Bad Device” list box. The database list boxes allow you to add a new device or remove a bad device from that location.

2. In the New Device list box, click on a device (e.g., 1A1).

3. Click on the > right arrow button to move a new device into the Add to DB list box. To add all devices, click the >> right double arrow button and all devices will move to the Add to DB list box.

![Figure 7.17 - Update Database]

![Figure 7.18 - Adding New Devices to Database]
4 Click on the **UPDATE DBASE** button to add the devices to the database. The Access window now displays meters as **OK** rather than **NEW**.

![Database Update](image)

Figure 7.19 - Database Update
What is a Recorder?

The recorder is a microcontroller base hardware consisting of components like ROM, RAM, real-time clock, and battery backup. Most recorders are designed for use with the AMR software. Some models are capable of automatically calling in at a programmed schedule – hourly, daily, weekly, or monthly. Recorders can be installed at a single location or multiple locations depending on the site configurations. Each recorder works independently and is capable of reading 4, 8, or 16 meters. A number of these recorders have a built-in meter. Some of the recorders are:

- IDR (Interval Data Recorder) – This recorder reads and records data. Typically, there are two configurations – standalone unit for use with standalone meters or mounted inside a MMU cabinet with E-Mon meters. To communicate with E-Mon Energy™, the recorder needs an E-Mon Energy Key (Communication Device).

- Class 3000 – An all-in-one recorder and meter, the Class 3000 is available as a standalone unit. The Class 3000 is capable of providing detailed information on power – amperage, voltage, power factor, phase angle, etc. To communicate with E-Mon Energy, the Class 3000 needs an E-Mon Energy Key (Communication Device).

IDRs and Class 3000s can be connected within the same physical network. They both utilize the same EZ7 protocol.

What is the Recorder Panel?

The Database Group provides a recorder panel for managing and creating recorder parameters. The Recorder tab will display the Device ID and Name, along with the Data Recorder Parameters. The following table describes fields on the Recorder tab.

![Figure 8.1 - Data Access – Recorder Panel]
### Panel Group/Field	Description
Recorder | Panel Group

Device ID* | This entry field is fixed and cannot be changed. You can add a new recorder if you click on the + panel button. This will clear all fields ready for new recorder information. It is highly recommended not to add recorders manually. Instead, make use of the Scan new hardware option.

Location No. | This field is fixed and cannot be changed. This field will always display the current Location number selected.

Group No. | This field is fixed and cannot be changed. This field will always display the current Group number selected.

Recorder Name | Panel Group

Recorder Name | Type in a recorder name. This is an optional field; however, we suggest you provide a meaningful name. By default, E-Mon Energy™ will assign group, location, and recorder ID.

ID | Type in an identification number for the recorder.

SN | Type in the serial number for the recorder. The serial number is located on the actual hardware label.

Ver. | This field is normally populated by E-Mon Energy after scanning the device. It is used for keep tracking of the recorder firmware.

Data Recorder Parameters | Panel Group

Profile Interval | Select the sampling rate for recording interval data with date/time stamp.

Peak Demand | Select the peak demand interval (15, 30, or 60 minutes) to calculate peak usage.

Rolling Demand | Select the rolling demand window period (values = 5-minute, 15-minute, Reset at EOI).

End of Interval | At the present time, this setting is defaulted to “Built-In Clock.”

Time Adjustment | These two fields allow you to set the minimum and maximum time range for automatic real-time clock adjustment.

Time Zone | Select the Time Zone where the recorder is physically located.

Enable DS Time | This checkbox allows you to choose Daylight Savings if this is pertinent to your time zone.

Use Location Setup | If you want the recorder to inherit the Location setup, check the “Use Location Setup” and all fields in this panel group will be populated with information from the Location tab.

Password Definition | Select the Password Definition name that is created on the Security panel of the Others tab in the Database window.

Use Location Password | If you want the recorder to inherit the Location setup, check the “Use Location Password” and all fields in this panel group will be populated with information from the Location tab.

* = Required field.
How does the Recorder Communicate?

E-Mon Energy™ communicates with the recorders in several ways, depending on your recorder type. Typically, there are 2 types of setups:

- **On-site** – PC connecting to recorders via a direct serial port or LAN (intranet).
- **Off-site** – PC connecting to recorders via a modem (telco or cellular) or WAN (Internet).

For additional information see the section on *Communication Parameters*.

How does E-Mon Energy Recognize a Recorder?

E-Mon Energy communicates with the recorders via a serial protocol known as EZ7. EZ7 is a character-oriented protocol with request and response capabilities. It operates in the half-duplex, stop-and-wait mode. Each block of message is terminated by a 16-bit CRC. EZ7 is used to communicate between multipoint/multi-drop in which there is a single master (computer). E-Mon Energy controls all message transfers to and from a community of slave devices – IDR/Class 3000. Each device must have a unique ID code (1A through 8Z for recorders and 1A1 through 8Z8 for meters), in a physical connection. When a new recorder is added, E-Mon Energy will scan by querying the ID code. Once a new device is detected, it will provide the option to add that device to the database.

Communication Setup

- **Baud Rate**: 2400, 4800, 9600, 19200 (default 9600)
- **Parity**: None
- **Parity Bits**: 8
- **Stop Bits**: 1

Warning
Within the same physical connection, if more than one recorder has the same ID code, the response to a command will result in data and errors. In such case, none of the duplicated recorders are able to communicate successfully.

When a recorder is first brought online, it can be preconfigured from the factory or locally at an installed time by a technician or it can be in an un-initialized state. If the recorder is in an un-initialize mode, it must be initialized in order for it to collect and store data correctly. Refer to the *Initializing a Recorder* procedure within this section.

The **Data Recorder Parameters** include:

- **Real-time clock** – Each recorder has its own clock with battery backup for time keeping.
- **Profile Interval** – Sets the sampling rate for recording interval data with date/time stamp.
- **Peak Demand** – Sets the peak demand interval of 15, 30, or 60 minutes to calculate peak usage.
- **Rolling Demand** – Sets the demand window to 5, 15 minutes, or none.
- **End of Interval** – At the present time, this setting is defaulted to “Built-In Clock.”
- **Time Adjustment** – Sets time range for automatic real-time clock adjustment.
- **Time Zone** – Sets time zone where recorder is physically located.

The Recorder parameters are configured in the E-Mon Energy Access window. After configuring, a user can send the information to the recorder. The following diagram illustrates the Data Recorder process.
Figure 8.2 - Setup and Initialize Recorder Process
Can I Set a Password for Recorder?

Yes, normally the recorder does not have the password security enabled, but you can set up a password. To set up password, you will need to select the Others tab on the Database window, and then select the Security icon. Refer to the Section on Other Features for details.

Note: This feature may not be accessible to everyone. The E-Mon Energy™ user must have administrator rights to configure these security parameters. Keep your password in a secure place.

Once the Password Definition is created, the password can be utilized in the Group, Location, or Recorder tab. Sending the security setup to the recorder is performed when you’re connected to the recorder via the Set Password in the Access Database function.

![Figure 8.3 - Recorder Security Password](image)

How do the Recorders use the AMR schedule?

Some models of the recorder are capable of running automatic scheduler for calling-in (call-home). You would use E-Mon Energy to set up the schedule, task, and server via the AMR tab. Once configured, E-Mon Energy can send the setup to the recorder. E-Mon Energy will send the schedule and call-in number (phone/IP Address). For information on setting up an AMR schedule, see the section on Automatic Meter Reading.
Where do I Set Location and Scan Recorders?

There are two ways of accessing the Set Location feature: first by drilling down to the location level in the E-Mon Energy™ Device Explorer window and right-clicking on select “Set Location,” or selecting Set Location from the Hardware menu.

![Image](Figure 8.4 - Explorer Window) ![Image](Figure 8.5 - Hardware Drop-Down Menu)

The Select Location dialog opens to display the Group and Location. The Select Location dialog allows you to select the Group Number/Name and Location Number/Name from the drop-down list. Clicking the Set button will open the Access window to a Ready and Standby state. Clicking the Connect button will open the Access window to an On-Line state. Note: If the location is via modem, allow time for E-Mon Energy to establish the connection. To learn more about how to select a Group and Location refer to the Setting Location procedure within this section.

![Image](Figure 8.6 - Select Location Dialog) ![Image](Figure 8.7 - Access Group Window)
What is the Access Window?

The Access window is the doorway to connecting to the location’s hardware. The Access window is divided into groups – Function, Hardware to Access, and Connection Control. The Function and Hardware to Access groups are available when you’re online with the location. Click the Connect button to start the connection. For additional information on the access, window and functions, refer to the Access Functions and Hardware Group section.

How do I scan for the Recorder?

Once the connection to the recorder is on-line, scanning the recorders and meters is the first thing you will do at start-up or when adding a new recorder or meter(s). From the Access window, selecting the Setup Hardware radio button will display the Scan Recorder button. If a new recorder is added, select All Possible, then click on the Scan Recorder button. This sends a command to the Recorder and Meters to verify their functional states. The recorders and meters respond back to the system and the Access window opens a status table response. See illustration below. For complete steps, refer to Scanning Recorder and Meters within this section.
What is Updating the Database?

Once E-Mon Energy™ identifies the recorder through the scanning process, the recorder will need to be added to the Database. This is accomplished through the Access group window using the Update Database button. The Update Database button opens a drop-down window that displays new, bad, and current devices in the database. Once scanned, the user can view the new devices and add them to the database. If a device scans “bad,” the user can remove the device from the database. See the illustrations below, and for complete steps, refer to Updating the Database within this section.

What is initializing a Recorder?

The process of initializing a recorder is seldom done, except for system startup or when adding a new recorder. Initializing a recorder is like resetting any electronic device, such as a DVD, to the factory default settings. When initializing, the parameters are set to factory default, the register is cleared from the recorder, as well as from the meter display. This process is done from the Access Location window under Setup Hardware. During the initializing process, the Access Location window displays the initialization in the status bar area. See illustrations below, and for complete steps, see Initializing the Recorder within this section.
How do I check and download the Recorder Profile?

The recorder stores meter readings and interval data. Depending on your recorder model, data storage space is limited based on memory size and sampling rate. (An IDR can store data up to 36 or 72 days at 15-minute intervals, or 12, or 24 days at 5-minute interval. In the 36-day 15-minute interval case, downloading time is required before the 36th day is reached.) We recommend you download data weekly. Data storage is first-in-first-out, meaning once storage limit is reached, the oldest interval data will be cleared, making room for new data. That is why it is necessary to check the profile status often to ensure that the computer data is current. Downloading the current data is done from the Read Hardware function on the Access Location window. The illustration below shows that recorder 1A has 7 days out of the 72 days of stored data and its sampling rate is 15 minutes. The status indicates that it is functioning, the download thru “date” indicates the last time we downloaded the data, and the last column indicates how many day are left until data will be lost. Note: When downloading, the progress is shown under the “Download Thru” column and in the status bar area. After downloading, all interval data is saved in the hard drive. Interval data is used for the load profile graphs and to generate consumption for billing.

The illustration below shows the software and site process flow for downloading a recorder data profile.

Figure 8.12 - Adding a Recorder Profile
How do I Verify the Recorder?

When a connection is established to a location using the Access Location window, E-Mon Energy™ communicates directly with the recorder to check the status and daily functionality of the device(s). To verify the recorder, the user can select the Verify Hardware function to check whether the profile mode, sampling rate, the demand interval, and demand window are functioning properly. If a problem occurs with the recorder, a warning will display in this window. The illustration below shows that the recorder is functioning properly.

Figure 8.13 - Verifying the Recorder Profile

Recorder Procedures

Setting a Location

To Set the Location:

1. From the E-Mon Energy Explorer Window, click and select Hardware\Set Location from the drop-down menu. The Select Location dialog opens.

 Figure 8.14 - Select Location Dialog

 Group and Location in status bar

2. Click on the Connect button to establish a connection and access the Function and Hardware to Access Groups.

 Figure 8.15 - Access Window
Scanning Recorder

To scan Recorder and Meter Devices:

3. From the *Function* group box, click on *Setup Hardware*.
4. From the *Hardware to Access* group box, click on *All Possible*.

![Function Buttons](figure8.16)

Figure 8.16 - Scan Recorder and Status Window

1. Click on the *SCAN RECORDER* button. By default, E-Mon Energy™ will start scanning for any new devices starting with IDs of 1A, 1B….. Once the new devices are detected, the grid will display the Recorder ID and the Meter Channel Status (OK, New, Bad…).

Updating the Database

To update the Database:

5. After the Scan Recorder process, wait until E-Mon Energy scans and moves past the last installed device ID. Wait a few seconds and click *CANCEL*. At this point, it will allow you to update the database.

![Update Database Button](figure8.17)

Figure 8.17 - Access Window Update Database

6. Click on the *UPDATE DATABASE* button. A dialog box displays with 4 list boxes *New Device*, *Add to DB*, *Bad Device*, and *Delete from DB*.

![Note: The “New Device” list box displays all new devices detected during the scan.](figure8.17)
In the **New Device** list box, click on a device (e.g., 1A1).

Click on the > right arrow button to move the new device into the **Add to DB** list box. To add all devices, click the >> right double arrow button and all devices will move to the **Add to DB** list box.

Click on the **UPDATE DBASE** button to add the devices to the database. The “**Database update is complete**” dialog box will open. Click **ok**. The Access window now displays meters as **OK** rather than **NEW**.
Deleting a Device from the Database

To delete a Recorder for Database:

1. After the Scan Recorder process, wait until E-Mon Energy™ scans and moves past the last installed device ID. Wait a few seconds and click **CANCEL**. At this point, it will allow you to update the database.

2. Click on the **UPDATE DATABASE** button and a dialog box displays with 4 list boxes: **New Device**, **Add to DB**, **Bad Device**, and **Delete from DB**.

 Note: The Bad devices will display under “Bad Device” list box. The database list boxes allow you to add a new device or remove a bad device from that location.

3. In the **Bad Device** list box, click on a device (e.g., 1B1).

4. Click on the >> right arrow button to move the bad device into the **Delete from DB** list box. To add all devices, click the >> right double arrow button and all devices will move to the **Delete from DB** list box.
Click on the **UPDATE DBASE** button to add the devices to the database. The “Database update is complete” dialog box will open. Click ok. The Access window now displays only one Recorder in the table rather than two (e.g., 1B removed).
Initializing the Recorder

To Initialize the Recorder:

1. With ONLINE status, click on SetupHardware, and click on INITIALIZE RECORDER Button. The Initialize recorder to factory dialog box opens.

 ![Initialize recorder to factory defaults dialog](image1)

 Figure 8.24 - Initialize recorder to factory defaults dialog

2. Select either the All displayed in Grid or Just One and choose from the drop-down list. Since this is a New Location, we are selecting All displayed in Grid. A Just One example can be an existing location where another recorder is added to it.

3. Click OK or CANCEL to exit. A message dialog box opens, warning that this command erases all record information and resets back to factory default settings.

 ![Warning Dialog](image2)

 Figure 8.25 - Warning Dialog

4. Click the YES button. The Access Group opens with an Initializing recorder status.

 ![Access Group Initializing recorder status](image3)

 Figure 8.26 - Access Group Initializing recorder status
Setting the Data Recorder Parameters

To Set the Data Recorder Parameters

1. Click on the Access DBase button.
2. Click on the Recorder Tab. In the Data Recorder Parameters group, select the Profile Interval from drop-down.
3. Select the Peak Demand from the drop-down.
4. Select the Rolling Demand from the drop-down. Note: The End of Interval is built in and it is not necessary to select from the drop-down.
5. Click inside the list box on each time increment and enter the min. and max. Time Adjustment or click on the ▲ up ▼ down arrows to adjust the time frame for each increment.
6. Select the Time Zone from the drop-down list.
7. Click on Enable DS Time.
8. Click on the SEND RECORDER button, to accept/send the data to the recorder.

Figure 8.27 - Access Dbase Send Recorder Parameters
Changing the Data Recorder Parameters

To change the Data Recorder Parameters:

1. Click on the Access DBase button.
2. Click on the Recorder Tab, in the Data Recorder Parameters group, select the Profile Interval from drop-down.
3. Select the Peak Demand from the drop-down.
4. Select the Rolling Demand from the drop-down. Note: The End of Interval is built in and it is not necessary to select from the drop-down.
5. Click inside list box on each time increments and enter the min. and max. Time Adjustment or click on the ▲ up ▼ down arrows to adjust the time frame for each increment.
6. Select the Time Zone from the drop-down list.
7. Click on Enable DS Time.
8. Click on the SEND RECORDER button, to accept/send the data to the recorder.

Reading and Downloading the Hardware Profile

To download the Hardware Profile:

1. From the Access Function Group, click on Read Hardware.
 The system will read the meters and display profile status (i.e., Status, Start Date, Days left from last Download, Sampling Rate, State (On/Off), Last Time downloaded data (Download Thru), and how many Days left to Download to Avoid Data Lost).
 Optional: If only reading one meter, select JustOne and choose from the drop-down list to the right.

2. If you want to force a download of all data from the recorder, check All data from the recorder prior to clicking the Download Button. The download process will begin and be shown in the Downloaded Thru and status bar in the lower left hand corner. When download is complete, the status bar will indicate – status complete.
Verifying the Recorders

To Verify the Recorder:

1. To verify the Recorder, click on **Verify Hardware**.
2. From the Hardware to Access group box, click on **All possible**.
3. Click on the **Verify Recorder** button. E-Mon Energy™ will start scanning for any recorders starting with IDs of 1A, 1B…. Once the devices are detected, the grid will display the Recorder status and profile.
What is a Meter?

A meter is a device that measures the energy usage (i.e., electricity, gas, and water). Typically, there are 2 types of electric meters. In a simple metering application, a kWh meter or kW Demand meter with or without display and energy usage pulse output is sufficient. Sometimes, your existing “glass” type meters can provide energy pulse output – KYZ. Utilizing the KYZ pulse output, we can connect to a data recorder for capturing and storing the pulse. For more complex metering, a meter will also capable of providing information on voltage, amperage, power factor, phase angle, etc.; meters such as the Class 3000. These high-end meters have a high performance microcontroller capable of calculating various elements of energy. E-Mon offers several meter types:

- KWh Meter with pulse output capable of connecting to a data recorder
- KWh/KW Demand Meter with pulse output capable of connecting to a data recorder
- Class 3000 with built-in data recorder and communication

What is a Submeter?

A submeter is a meter that’s installed after the master meter (a master meter is usually a utility meter) for the purpose of defining the energy use a specific location. As an example, a shopping mall owner could have a master meter that measures the electric use for the entire shopping mall. Thus, the mall owner would receive a single bill. An issue that frequently arises from the single meter is how to recover the usage charge from each store. To make matters worse, each store can have different types, (e.g., clothing, pizza, computer, ice cream, etc.). Therefore, the actual usage each store contributes to the total bill is unknown. To resolve this obstacle, submetering can be installed to monitor the actual usage for each individual store. The shopping mall owner will then be able to read the meters and generate a bill for each store in order to recover the cost of the master meter bill.

How does E-Mon Energy™ Recognize the Meters?

E-Mon Energy recognizes the meters through an address assigned and associated with the recorder at each group and location. Each meter gets an assigned address that determines one of the eight positions associated with the recorder (IDR) in the site location. If the recorder (IDR) has an address of 1A, then the meter address would be 1A1, 1A2, and continue up to eight meters. When E-Mon Energy scans for recorders, the recorder will report back the number and position of the input jacks that are being connected to the meters. If the recorder or meters are new to E-Mon Energy, it will also query the recorder and meter information in preparation for adding to the database.

What is the Meter Information?

The meter information consists of voltage, amperage, sets of sensors in parallel, and pulse factor. This information is normally taken from the Meter Information Form, and entered into E-Mon Energy (see Appendix section for the Meter Information Form). The meter information is normally entered into E-Mon Energy during a first-time configuration setup. This information is then uploaded to the IDR (recorder) for each meter. The meter information, such as units of measure, can be different, depending on the energy resource you are using. If your system involves connecting other pulse output meters into the recorder (IDR), you will need to get the pulse value for these meters.
Where do I enter the Meter Information?

The meter information can be entered in two places: from the Meter tab of the Database or the Meter tab of the Access Group. Both windows have the same information, except that the Access Group window is where you can send the meter information to the recorder. The following illustration describes the Meter tab on the Database Access window and Access location window.

![Database Access - Meter Tab](image)

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Device ID*</td>
<td>Type in the meter ID (only if you’re adding a new meter manually). This field is required.</td>
</tr>
<tr>
<td>Location No.</td>
<td>This field is fixed and cannot be changed. This field will always display the current Location number selected.</td>
</tr>
<tr>
<td>Group No.</td>
<td>This field is fixed and cannot be changed. This field will always display the current Group number selected.</td>
</tr>
</tbody>
</table>

Meter Name

<table>
<thead>
<tr>
<th>Panel Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>S/N</td>
</tr>
<tr>
<td>Ver.</td>
</tr>
</tbody>
</table>

Energy Type

<table>
<thead>
<tr>
<th>Panel Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Type</td>
</tr>
<tr>
<td>Usage</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>Meter Mult</td>
</tr>
<tr>
<td>Pulse Factor</td>
</tr>
<tr>
<td>Meter Size</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>Sensor Size</td>
</tr>
<tr>
<td>Set of Sensors</td>
</tr>
<tr>
<td>Pulse Value</td>
</tr>
<tr>
<td>Max Rated Load</td>
</tr>
<tr>
<td>Pulse Input Type</td>
</tr>
</tbody>
</table>

Load Control

Panel Group	This panel is required if utilizing the Load Control feature. Refer to “Others” tab for details on how to create Load Control parameters. If you want this meter to inherit the load control setup from the location tab, check the “Use Location Load Control.” This is a reserved feature.
Primary	Select a primary load control name. Then check the primary box to enable this feature.
Secondary	Select a secondary load control name. Then check the secondary box to enable this feature.

Auto Billing Cycle

Panel Group	If you check “Use Location,” the fields in this panel group will be populated with data from the Location tab.
Billing Cycle	From this drop-down, you can select a Bill Cycle name that is created on the Bill Cycle tab of the Database Access window. The Billing Cycle is required for creating a billing statement.
Use Location	If you want this meter to use the same Billing Cycle name as specified in the location tab, check “Use Location.”

Billing Schedule and Templates

Panel Group	If you want this meter to use the same billing rate structure as specified in the location tab, Check “Use Location Schedule.” Otherwise, check the “Enable for Billing” to activate this feature and specify the TOU Schedule name and Rate Schedule name.
TOU Schedule	Select a TOU Schedule name that is created on the TOU tab of the Database Access window. Refer to Rate Table and TOU Schedule sections for details.
Rate Schedule	Select a Rate name that is created on the “Rate” tab of the Database Access window. Refer to Rate Table and TOU Schedule section for details.
Meter Specific	In the Name, Unit, Base, Rate, type in specific meter information you would like to add, (e.g., square foot, usage allowed). This information will be passed to the billing forms for bill calculations.
Use Location Schedule	Check “Use Location Schedule.” The fields in this panel group will be populated with data from the Location tab.
Reset Meter Readings	If you want the meter reading to reset to 0 after each billing cycle, check “Reset Meter Readings.” Otherwise, the subsequent reading will be accumulated, (i.e., “current read” and “previous read” will be non-zero).

* = Required field.

Warning
Entering incorrect meter information will cause faulty readings.
The Access location has the same fields except for the buttons above the meter panel. Note: Before sending information to the Meter or Recorder, ensure that all information is correct.

Figure 9.2 - Access Location – Access Dbase Meter Tab

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Recorder</td>
<td>Click this button to send the recorder configuration to the recorder. You must be on the Recorder or Location tab to perform this step. If you're on the Location tab, recorder configurations for all recorders at this location will be sent respectively. If you're on the Recorder tab, configuration for the current recorder will be sent.</td>
</tr>
<tr>
<td>Send Meter</td>
<td>Click this button to send the meter configuration to the recorder. You must be on the Meter, Recorder, or Location tab to perform this step. If you're on the Location tab, configurations for all the meters at this location will be sent respectively. If you're on the Recorder tab, configuration for all meters in the current recorder will be sent. If you're on the Meter tab, configuration of the current meter will be sent.</td>
</tr>
<tr>
<td>Set Password</td>
<td>Click this button to send the password setup to the recorder. You must be on the Recorder or Location tab to perform this step. If you're on the Location tab, the password will be sent to all the recorders at this location. If you're on the Recorder tab, the password will be sent to the current recorder.</td>
</tr>
<tr>
<td>Set Call-in AMR</td>
<td>Click this button to send the call-in (call-home) setup to the recorder. You must be on the Location tab to perform this step. Call-in AMR schedule will only be sent to the recorder with Device ID “1A.” If you are utilizing the Call-in AMR (also referred to as Call-home), the Device 1A is responsible to initiate the calling in. If the location has multiple recorders in the same RS-485 network, the additional recorders will tack along the 1A once connected.</td>
</tr>
<tr>
<td>Set Load Control</td>
<td>Click this button to send the load control setup to the recorder/meter. You must be on the Meter, Recorder, or Location tab to perform this step. If you're on the Location tab, settings for all the meters at this location will be sent respectively. If you're on the Recorder tab, settings for all meters in the current recorder will be sent. If you're on the Meter tab, settings of the current meter will be sent.</td>
</tr>
</tbody>
</table>
Select Meter Location

To select the Meter Location:

1. From the **E-Mon Energy™ Explorer** window, click and select **Hardware\Set Location** from the drop-down menu. The **Select Location** dialog box opens.

![Figure 9.3 - Select Location Dialog](image)

2. From the **Group** drop-down list, select a **Group**.
3. From the **Location** drop-down list, select a **Location** you want to scan and with which you wish to communicate.
4. Click on the **Set** button. The Access window opens.

 Note: The Group and Location display in the window’s status bar area.

![Figure 9.4 - Access Window](image)

5. Click on the **CONNECT** button to establish a connection and access the **Function** and **Hardware to Access** Groups.

Scanning Devices

6. From the **Function** group box, click on **SetupHardware**.
7. From the **Hardware to Access** group box, click on **All possible**.

![Figure 9.5 - Scan Recorder and Status Window](image)

8. Click on the **SCAN RECORDER** button. By default, **E-Mon Energy** will start scanning for any new devices starting with IDs of 1A, 1B….. Once the new devices are detected, the grid will display the Recorder ID and the Meter Channel Status (OK, New, Bad….)
Once E-Mon Energy™ scans and moves past the last installed device ID, wait a few seconds and click CANCEL. At this point, it will allow you to update the database.

Click on the UPDATE DATABASE button and a dialog box displays with 4 list boxes: New Device, Add to DB, Bad Device, and Delete from DB. Note: The “New Device” list box displays all new devices detected during the scan. The Bad devices will display under the “Bad Device” list box. The database list boxes allow you to add a new device or remove a bad device from that location.

[Figure 9.6 - Update Database]

In the New Device list box, click on a device. (e.g., 1A1).

Click on the > right arrow button to move the new device into the Add to DB list box. To add all devices, click the >> right double arrow button and all devices will move to the Add to DB list box.

[Figure 9.7 - Adding New Devices to Database]

Click on the UPDATE DBASE button to add the devices to the database. The Access window now displays meters as OK rather than NEW.

[Figure 9.8 - Database update complete message dialog]
Setting up the Meter Information

To select the Meter Location:

1. Click on Meter Tab. In the Meter Size group, select the Voltage from the drop-down.
2. Select the Sensor Size (Amps) from the drop-down.
3. Select the Set of Sensors (Sets) from the drop-down.
4. Select the Pulse Input Type (kWh Meter) from the drop-down.

Note: Under the Pulse Input Type, the default setting most commonly used is 50/50. The On/Off (50/50) must be selected.

5. From the Energy Type group, select the Pulse Fact.

Note: The Meter Multiplier is pre-set and is automatically calculated.

6. Click on the Send Meter button to accept/send the data to the meter.

![Image of Access DBase Send Meter Parameters]

Figure 9.9 - Access DBase Send Meter Parameters

Reading the Meter Hardware

To read the Meter Hardware:

1. From the Access Function Group, click on Read Hardware. Click on Profile Status to display the status (i.e. Status, Start Date, Days left from last Download, Sampling Rate, State [On/Off], Last Time downloaded data [Download Thru], and how many Days left to Download to Avoid Data Lost). If you want to read only one meter, select Just One and choose the Device ID from the drop-down list to the right.
2 If you want to download all data from the recorder, check All Data and then click the Download button. The download process will begin. The download progress is shown in Downloaded Thru and the status bar in the lower left.

3 Click on the VERSION/TIME button and verify if the version is correct.
Section 10

Virtual Meter

What is a Virtual Meter?

A virtual meter is a software meter that we create within E-Mon Energy™ to store calculated data from one or more hardware meter(s). A virtual meter can have whole and/or partial readings from multiple hardware meters. In order to create a virtual meter(s), we must first create a virtual recorder. Similar to a virtual meter, a virtual recorder is a software recorder that we create within E-Mon Energy to have the same configurations as a hardware recorder. A virtual recorder can have up to 8 virtual meters. Virtual recorders and meters only exist in E-Mon Energy database. Within a group location, there can be up to 1664 virtual meters, i.e. 8 x 26 x 8 = 1A1, 1A2, ..., 1Z1, ..., 1Z8 up to 8A1, 8A2, ..., 8Z1, ..., 8Z8.

Virtual meters must be created in Location 0 of any Group number. This location can have multiple virtual recorders and virtual meters. All of the virtual meter definition is done within the Virtual Meter tab on the Database window. A virtual meter doesn't have voltage, amperage, etc. settings comparing to the hardware meter; instead, it has a virtual meter definition list box where you can add/define hardware meter(s).

Once the virtual hardware is added, a profile is generated for this virtual meter. These profiles are generated using the current data from the database. The virtual meter profiles are done from the “Generate Virtual Meter Profile” window.

Can I Change a Virtual Meter Definition?

Yes, once the virtual meter is created, you can add or delete a meter definition or modify an existing meter definition. The following illustrates and describes the Virtual Meter tab on the Database Access window.

![Figure 10.1 - Virtual Meter Tab](image)

E-Mon Energy User Manual 10-1
<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Device ID*</td>
<td>Type in the meter ID (only if you’re adding a new meter manually). This is a required field.</td>
</tr>
<tr>
<td>Location No.</td>
<td>This field is fixed and cannot be changed. This field will always display the current Location number selected. For virtual meters, this location must be 0.</td>
</tr>
<tr>
<td>Group No.</td>
<td>This field is fixed and cannot be changed. This field will always display the current Group number selected.</td>
</tr>
<tr>
<td>Meter Name</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Name</td>
<td>Type in the meter name. This is an optional field; however, we suggest you provide a meaningful name.</td>
</tr>
<tr>
<td>ID</td>
<td>Type in an ID number.</td>
</tr>
<tr>
<td>S/N</td>
<td>Type in the serial number.</td>
</tr>
<tr>
<td>Ver.</td>
<td>Type in the version number.</td>
</tr>
<tr>
<td>Energy Type</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Energy Type</td>
<td>This is a drop-down field. Select the type of energy (i.e. electric, gas, water).</td>
</tr>
<tr>
<td>Usage</td>
<td>Type in the usage unit of measure (i.e. KWH, GAL).</td>
</tr>
<tr>
<td>Demand</td>
<td>Type in the demand unit of measure (i.e. KW).</td>
</tr>
<tr>
<td>Pulse Val</td>
<td>This field is automatically calculated based on hardware meter information.</td>
</tr>
<tr>
<td>Virtual Meter</td>
<td>Definition Panel Group. The list box displays all the meter definitions of the hardware meter(s). Use the Add/Edit/Delete buttons to add, edit, or delete the configuration.</td>
</tr>
<tr>
<td>Add/Edit/Delete</td>
<td>Buttons The Add button will open the Virtual Meter Dialog Box for hardware meter selection. The Edit button will allow you to open the selected meter definition for editing. The Delete button will allow you to remove the selected meter from the list box.</td>
</tr>
<tr>
<td>Meter Type</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Totalized Meter</td>
<td>This panel group is preset and cannot be changed.</td>
</tr>
<tr>
<td>Auto Billing Cycle</td>
<td>Panel Group. If you check “Use Location,” the fields in this panel group will be populated with data from the Location tab.</td>
</tr>
<tr>
<td>Billing Cycle</td>
<td>Select a Bill Cycle name that is created on the Bill Cycle tab of the Database Access window. The Billing Cycle is required for creating a billing statement.</td>
</tr>
<tr>
<td>Use Location</td>
<td>If you want this meter to use the same Billing Cycle name as specified in the location tab, Check “Use Location.”</td>
</tr>
<tr>
<td>Billing Schedule and Templates</td>
<td>Panel Group. If you want this meter to use the same billing rate structure as specified in the location tab, Check “Use Location Schedule.” Otherwise, check the “Enable for Billing” to activate this feature and specify the TOU Schedule name and Rate Schedule name.</td>
</tr>
<tr>
<td>TOU Schedule</td>
<td>Select a TOU Schedule name that is created on the TOU tab of the Database Access window. Refer to Rate Table and TOU Schedule sections for details.</td>
</tr>
<tr>
<td>Rate Schedule</td>
<td>Select a Rate name that is created on the “Rate” tab of the Database Access window. Refer to Rate Table and TOU Schedule sections for details.</td>
</tr>
<tr>
<td>Meter Specific</td>
<td>In the Name, Unit, Base, Rate, type in specific Meter information you would like to add, (i.e. square foot, usage allowed, etc). This information will be passed to the billing forms for bill calculations.</td>
</tr>
<tr>
<td>Use Location Schedule</td>
<td>Check “Use Location Schedule.” The fields in this panel group will be populated with data from the Location tab.</td>
</tr>
</tbody>
</table>

* = Required field.
How do I Create a Location for the Virtual Meter?

Setting up a Location Tab

To set up the location:

1. Select **Database\Location** from the drop-down menu or click on the **Location** tab in the **Database** window.

![Database/Virtual Meter Menu](image)

Figure 10.2 - Database/Virtual Meter Menu

2. Select a **Group** from the **Device Explorer** (e.g., Tuesday).

![Device Explorer - Selecting Group](image)

Figure 10.3 - Device Explorer - Selecting Group

3. Select the Location tab, and click on the Panel Action “+” button to add a new location.
In the **Location Number** type in “0.” Note: Location “0” is required for Virtual Meters.

Tab across and type in a **Location Name**.

Click on the “√” button to accept/save the location record.

Update the Device Explorer

Click the **DEVICE EXPLORER** button to refresh the device directory. You will notice that the **Location Number** “0” and **Name** have been added under the Group Name.
How do I create a Virtual Recorder?

Creating a Virtual Recorder

To create a Virtual Recorder:

1. Select the Virtual Location from the Device Explorer.
2. Click on the Recorder tab and click on the Panel Action “+” button to add a new recorder.

![Figure 10.5 - Virtual Meter Recorder](image)

3. In the Device ID, type in (1A, 1B, …, 8Z). Note: This field is required and must be unique within each location.
4. Tab across and type in a Recorder name.
5. Click on the “√” button to accept/save the recorder record.

Update the Device Explorer

6. Click the DEVICE EXPLORER button to refresh the directory.
 Note: You will notice that the Recorder Device ID and Name have been added under the Location Name.
Creating a Virtual Meter

To select a Virtual Meter:

1. Select a Recorder from the Virtual Location in the Device Explorer.
2. Click on the Virtual Meter tab and then click on the Panel Action “+” button to add a new meter.
3. In the Device ID, type in (1A1, 1A2, …, 1Z8 up to 8A1, 8A2, …, 8Z1, …, 8Z8). Note: This field is required and must be unique within each location.
4. Tab across and type in a Meter name.
5. In the Virtual Meter Definition list box, click the Add button. The Virtual Meter dialog box opens.
6. From the Select Meter Node device directory tree, drill-down and select the meter you want. The Meter fields on the right will populate with the meter profile. If you need to add total readings, in the Percent (%) field, type in “100.” If you need to subtract total readings, in the Percent (%) field, type in “-100.” If you need to add/subtract partial readings, type in the percentage number.
7. Click OK. The meter will display in the Virtual Meter Definition list box.
8 Ensure the check box next to the meter is checked. Repeat the steps to add additional meter(s).

9 From the Meter tab, click on the “√” button to accept/save the meter record.

Update the Device Explorer

10 Click the **DEVICE EXPLORER** button, to refresh the device directory.

*Note: You will notice that the **Meter Device ID** and **Name** have been added under the **Recorder Name**.*
Creating the Virtual Meter Profile

To create a Virtual Meter Profile automatically:

1. Select the Hardware Generate Virtual Meter Profile from the drop-down menu. The Generate Virtual Meter Profile window opens.

![Figure 10.10 - Virtual Meter - Hardware - Generate Virtual Profile Menu](image1)

2. From the Device Explorer, select Location and drill down to the Virtual Meter.

3. Click on a Virtual Meter. The Virtual Meter panel will display the Group, Location, and Virtual Meter ID.

![Figure 10.12 - Virtual Meter ID](image2)

4. Click on the checkbox to mark New Profile Only to automatically generate the Virtual Meter Profiles.

![Figure 10.13 - Check -New Profile Only](image3)
5 Click on **Generate Profile** button. The Virtual Meter table below will search and retrieve the data from the database.

![Virtual Meter Profile Time Period](image)

Figure 10.14 - Virtual Meter Profile Time Period

![Generate Virtual Meter Profile](image)

Figure 10.15 - Generate Virtual Meter Profile - Automatically
To create a Virtual Meter Profile manually:

1. From the Device Explorer, select Location and drill down. Click on the Virtual Meter you want to manually add.
2. The Virtual Meter panel should display in the Group, Location, and Virtual Meter ID.

![Figure 10.16 - Virtual Meter ID](image)

3. Uncheck the checkbox *New Profile Only* to manually generate the Virtual Meter Profile.

![Figure 10.17 - Uncheck -New Profile Only](image)

4. Next, select from the drop-down the calendar or type in the *From* and *To* Profile Time Period for the Virtual Meter.
5. Click on the **Generate Profile** button. The Virtual meter will be added.

![Figure 10.18 - Generate Virtual Meter Profile Manually](image)
What is a E-Mon Energy™ Customer?

The customers are the tenants or businesses to which you provide the meter reading/billing service. Tracking the customer’s information and energy consumption is the key element in analyzing data and energy patterns for a complete energy management system. Your customer's locations can virtually be read anywhere as long as they are tied to a meter billing device(s). With this enhancement, it provides a good communication with your customers.

E-Mon Energy maintains information on each customer account by a sequence number identifier and meter numbers. The system allows you to define multiple account groups to a single customer or to define a single customer to just one meter. Along with these features, the E-Mon Energy software can monitor each group or customer from a remote location. The customer information is entered into the customer panel and stored in the database. The illustration below shows a typical configuration of a single customer owning a single meter and multiple customers sharing the same meter(s).

![E-Mon Energy Customer and Device configuration](image)

Figure 11.1 - E-Mon Energy Customer and Device configuration
What is the Customer Panel?

The *Database Group* provides a *Customer* panel for assigning and managing your customer’s information. The following table describes fields on the *Customer* panel.

![Customer Panel](image)

Figure 11.2 - Customer Tab

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer ID*</td>
<td>Type in the Customer’s Sequence Number Identifier. This is a required field.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a brief explanation of the customer (i.e. Business Name, Service).</td>
</tr>
<tr>
<td>Customer Address</td>
<td></td>
</tr>
<tr>
<td>Name1</td>
<td>Type in the customer or business name (i.e. Joe’s Pet Store).</td>
</tr>
<tr>
<td>Name2</td>
<td>This is optional. Type a second name for the customer (i.e. Joe Smith).</td>
</tr>
<tr>
<td>Address1</td>
<td>Type in the customer’s address.</td>
</tr>
<tr>
<td>Address2</td>
<td>Type in a second address, if applicable.</td>
</tr>
<tr>
<td>City</td>
<td>Type in the city location for the customer’s address.</td>
</tr>
<tr>
<td>State</td>
<td>Type in the state for the customer’s address.</td>
</tr>
<tr>
<td>Zip</td>
<td>Type in the zip code for the customer’s address.</td>
</tr>
<tr>
<td>Fax No.</td>
<td>Type in the fax number for the customer.</td>
</tr>
<tr>
<td>Email Account</td>
<td>Type in an email address, if applicable.</td>
</tr>
<tr>
<td>Account Open</td>
<td>Type in the date when the customer opened the account. The field format is mm/dd/yyyy.</td>
</tr>
<tr>
<td>Account Close</td>
<td>This field will always be empty unless the customer has been discontinued.</td>
</tr>
<tr>
<td>Billing Devices</td>
<td></td>
</tr>
<tr>
<td>Billing Devices</td>
<td>This is a multi-functional list box that displays the customer meters and the check allows you to click to select or deselect a meter.</td>
</tr>
<tr>
<td>Add Button</td>
<td>This button opens a Customer Billing Device dialog box to add the meter devices to the customer.</td>
</tr>
<tr>
<td>Delete Button</td>
<td>This button functions with the list box. When highlighting and clicking on a device, it removes the device from the box.</td>
</tr>
</tbody>
</table>
What is the Customer's Billing Device?

The Customer’s Billing Device is the group of devices (meters) or a single device owned by the customer. Through the customer information panel, the user can access the Customers Billing Devices dialog box. The Customer Billing Devices dialog box opens to display the devices. Click the node to select device(s) explorer directory. Here the user can drill down to the actual meter and click OK to select. When the device is selected and highlighted, the Group No, Location No., and Meter ID appear in the Device group on the left side of the dialog box.

![Customer Billing Devices](image)

Figure 11.3 - Customer Billing Devices

How do I add a Customer?

Adding a Customer

To add a customer:

1. Select Database\Customer from the drop-down menu or click on the Customer tab in the Database window.
2 Click on the Panel Action “+” button to add a new customer.
3 Type in a Customer ID (1…9999999). Note: This field is required and must be unique.
4 Tab across and type in a Description for the customer.

Customer Address (Optional)

5 Tab down and type in the customers:
 - Name (1, 2)
 - Address (1, 2)
 - City
 - State
 - Zip
 - Phone No.
 - Fax No.
 - Email
 - Account Open (Format: mm/dd/yyyy)

Figure 11.4 - Customer Tab
Adding a Billing Device

To add a Billing Device:

6. Check the Bill Devices that applies to the customer. Uncheck devices that do not apply to the customer.

7. To add a Bill Device, click on the Add button and the Customer Bill Devices window opens.

8. From the Customer Bill Device Directory, right click and drill down to the actual device.

9. Click and select the device you want to add.

10. Click OK. The device now displays in the Bill Devices list box.

11. To assign the device to the customer, ensure the check box next to the device is checked. The device is now added to the customer.

12. To delete a device from the list box, click on the one you want to delete. Click the Delete button.

13. Click on the “√” button to accept/save the customer record.
What Is a Rate Table and TOU Schedule?

The Rate Table and Time-of-Use (TOU) Schedule both work hand-in-hand with the billing, reporting, and monitoring features. In preparation for generating bills, you must setup your Schedule and your Rate table for the TOU schedule.

The TOU Schedule, allows you to setup your time-periods for capturing consumption occurring at various times of the day, week, month, and season. A typical TOU schedule would have on-peak and off-peak usage and demand. Some would have weekdays, weekends, and holidays. Others would also have summer, winter, spring, and falls. Another somewhat different type of schedule is tier. The tier imposes limits on energy usage. It sets the different usage range to be charged at different rates. (e.g. The first 200 kWh costs $0.025 per kWh, anything over costs $0.012 per kWh.) This is an example of a 2-tier. There are different flavors of tiers – 2, 3, or 4 levels. Some also calculates the tier limits based on the kW demand. (e.g. The first 25 kWh per kW Demand cost $0.020 per kWh, anything over costs $0.015.) This is an example of a 2-tier per kW Demand. Note: In this example, if the kW Demand is 15 kW, the first tier would be 375 kWh (or 25 kWh times 15 kW).

The Rate Table allows you to setup the cost associates with the consumption for the various time-periods according to the TOU schedule. The setup screen for entering the rates is based on the TOU schedule you use.

E-Mon Energy™ supports multiple TOU schedules and Rate tables. Using the Database window, you can assign the TOU schedule and Rate table setup to the whole group of meters, the whole location of meters, and/or to each meter individually. Note: You can assign up to 4 different TOU schedules within the same bill cycle name.
How is the Time of Use (TOU) schedule used?

A Time of Use (TOU) schedule is used to specify time periods for determining energy usage and demand for different time-of-day, day of the week, and seasons. Typically, the cost of energy usage and demand are higher during the day than night. Therefore, the need to separate the usage and demand between various time periods is needed in order to apply the corresponding rates.

The TOU schedule can be setup to incorporate seasons, (up to 4 seasons per year) with a defined start and end date. The illustration below displays the TOU schedule setup screen.

When incorporating the start and end date, the “End date” or “Start Date” cannot overlap or have gap. All the seasons time periods should cover one whole year.

Figure 12.1 - TOU Schedule

In this example, the TOU shows each season (Season1 and Season2) and each TOU types (On-Peak, Off-Peak, and Mid-Peak) are listed on individual tabs and displays the “time allocation” grid as Monday through Sunday-Holiday with a From and To time entry. Each schedule is broken down into a 24-hour day and 30-minute intervals from 00:00 to 24:00. The illustration below shows Season1, On-Peak time, and day table schedule.

Figure 12.2 - TOU Seasons
The TOU setup displays a color chart. The TOU has a color-coded graph, which displays the entire schedule based on Days and Time. The “time allocation” specified, will be displayed to help you visually verify the correctness of the settings. Should there be a time slot unaccounted for, the graph will display reflecting the missing slot.

Figure 12.3 - TOU Graph View

The TOU schedule supports up to eight programmable TOU Types to accommodate the different times of the day (i.e. On-Peak, Off-Peak or Mid-Peak) for energy usage and demand. For specific events such as holidays or off days (weekends) a Weekend and Holiday option is accessible for the TOU schedule. A dialog box is provided to incorporate the Holiday schedule through the “Holiday Setup” button. The illustration below displays the Holiday Setup dialog.

Figure 12.4 - Holiday Setup
How does the TOU schedule know Daylight Savings?

To enable the Daylight savings, you must check “Enable DS Time” on the Recorder panel; by default DST is enabled. This DS time adjustment uses the first Sunday in April and the Last Sunday in October. If your AMR system does not utilize daylight saving, be sure to disable this option.

When setting up the daylight savings time, remember to adjust the min. and max. “time adjustment” for a sliding window average. This option allows E-Mon Energy™ to automatically synchronize the recorder time to the PC time when the clocks drift within the specified range.

How do I create a TOU Schedule and Time Periods?

Create a TOU Schedule Procedures

To add a TOU Schedule and Seasons:

1. Select Database\TOU from the drop-down menu or click on the TOU tab in the Database window.
2. Click on the Panel Action“+” button to add a new TOU schedule.
3. In the TOU Schedule Name field, type a Name for the Schedule. Note: This field is required and must be unique.

Figure 12.5 - TOU Tab

4. Click on Season 1, type in the Name for Season 1. If your TOU requires multiple seasons, repeat the steps for Season 2, 3, and 4.
 Note: E-Mon Energy supports up to 4 seasons.
5. Click on Type 1, type in the period names (e.g. On-Peak, Off Peak). If your TOU requires multiple periods, repeat the steps for Type 2, 3, 4, 5, 6, 7, and 8.
 Note: E-Mon Energy supports up to 8 periods.
6 Under Season, select **Type 1, Season 1** Tab.
7 Type in or select from Calendar, a Start Date and End Date for Type1, Season 1 schedule

Type or select from popup Calendar the Start and End Date for the schedule

Click in cell area to enter the Time.

![Figure 12.6 - Schedule Setup Group](image)

8 In the **From\Mon** cell, type in the starting time for Monday.
 Note: The schedule uses military time. (e.g. 13:00 = 1:00 PM)
9 In the **To\Mon** cell, type in the time the schedule will stop on Monday.
10 Repeat the same steps for each day of the week, up to the last day for the schedule.
11 If you want to run this schedule on the weekdays, click **Weekdays use the same schedule**.

![Figure 12.7 - TOU Schedule View](image)

12 Repeat the Steps 6 to 12 again for each **Type** and **Season** tabs that applies to the TOU type and Seasons entered.
13 Click on “√” button to accept/save the TOU schedule record. The **Time/Day of the Week** graph displays the day and time frame related to the Type and Season schedule.
How is the Rate Table used?

A *Rate Table* is used to specify the cost associated with the energy usage and demand for TOU. Typically, usage for each period has different rate, similarly demand for each period has a different rate. Therefore, we need to be able to specify separate different rates for the usage and demand between various time periods.

The *Rate Table* allows you to setup the cost associates with the consumption for the various time-periods according to the TOU schedule. The setup screen for entering the rates is based on the TOU schedule you use.

E-Mon Energy™ supports multiple rate tables. Using the Database window, you can assign the Rate table setup to the whole group of meters, the whole location of meters, and/or to each meter individually. Note: you can assign up to 4 rate tables within the same bill cycle name.

These rates table is broken down into three different tabs:

Usage Charge – the rates for energy usage (e.g. kWh).

Demand Charge – the rates for peak demand (e.g. kW).

Other Charges – charges are comprised of rate and tax adjustments. These adjustments are changes in rates or total charges with changes in specific items of cost, square footage, like taxes and fuel prices. These charges can also include recover fees imposed by state and local regulatory agencies or refund credit to a customer.
The illustration below shows a rate table setup for one season:

<table>
<thead>
<tr>
<th>USAGE CHARGES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period</td>
<td>Season 1</td>
</tr>
<tr>
<td>Period 1</td>
<td>0.058470</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEMAND CHARGES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period</td>
<td>Season 1</td>
</tr>
<tr>
<td>Period 1</td>
<td>2.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTHER CHARGES (Energy Usage or User Specific (e.g. square footage))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Number</td>
<td>0000011</td>
</tr>
<tr>
<td>Rate Template</td>
<td>S2P.VTS</td>
</tr>
<tr>
<td>Tax Rate</td>
<td>Tax 1 (%)</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>Rate Adjustment</td>
<td>Season 1</td>
</tr>
<tr>
<td>Adjustment 1</td>
<td></td>
</tr>
<tr>
<td>Adjustment 2</td>
<td></td>
</tr>
<tr>
<td>Extra Rate Name</td>
<td>Facility Demand</td>
</tr>
<tr>
<td>Unit</td>
<td>KW</td>
</tr>
<tr>
<td>Season</td>
<td>6.60</td>
</tr>
</tbody>
</table>

Table 12.1 - Rate Table Example

What is a Rate Template File?

E-Mon Energy™ provides 80+ rate templates to choose from, depending on your rate schedule, you can have TOU and/or tier structure. The rate template can be used with or without modifications or revised by you to reflect the actual applicable rate structure and tier. For a list of all the Rate templates and descriptions refer to the README.PDF file located in your FORMBILL folder of your E-Mon Energy™ application. After you modify a rate structure, you can assign a unique name for your rate structure.

Note: The custom rate template is stored in a common rate database and can also be shared and used by other. It is highly recommended that once you modify a supplied rate structure, save it as a different name.
How to setup a New Rate Table?

To setup a Rate Name and Description

1. Select Database\Rates Schedule from the drop-down menu or click on the Rates tab in the Database window.

 ![Database\Rate Schedule menu](image)

 Figure 12.8 - Database\Rate Schedule menu

2. Click on the Panel Action “+” button, to add a new Rate Table.
3. Type in a Rate Name. Note: This field is required and must be unique.
4. Tab across and type in a Description for the Rate Table.

 ![Rate Name and Description](image)

 Figure 12.9 - Rate Name and Description

To select a Rate Template File:

5. Select a Rate Template File from the drop-down list. The Rate Template file name displays in the field.

 Note: This can be a standard E-Mon Energy™ template or your customized rate template file.

6. Click on the Usage Charge tab, at the bottom of the panel.
7. Within the Energy Use grid, type in each energy rate, based on per time period and per season.
To setup the Demand Charges:

8. Click on the Demand Charge tab, at the bottom of the panel.
9. Within the grid, type in the cell the season rate, the sum of all period charges.

To Setup the Other Charges:

10. Click on the Other Charges tab, at the bottom of the panel.
11. Under the Tax Rate (%), type in a tax rate percentage(s) (i.e. 6% is shown). Note: Four different Tax fields are provided to allow for tax adjustments based on rates.
12. From the Rate Adjustment, under Season 1, Adjustment 1, type in the energy cost adjustment rate for the season. (e.g. Season 1 = Fall, Season 2 = Winter).
 Note: E-Mon Energy™ provides two Adjustment fields per season.
13. If you use a customized bill form, type in the Name, Unit, Season (1, 2, 3, and 4) based on your rate schedule.
 Note: Only enter information into those fields if you have a customized bill form.
Or

14. If you use the same rates for all seasons, check “Same Rate for all seasons”.
15. Click on “✓” button to accept/save the rate record.

Figure 12.12 - Rate Tab – Other Charges
What is the Demand Charge Panel?

The Database group provides a Demand Charge panel for entering the rates associated with peak demand. This screen panel can vary depending on the associated Rate Template File selected. In this example we are using the S2P.VTS template. The following table describes fields on the Demand Charge Panel based on a Rate Template file.

Figure 12.13 - Demand Charge Tab

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>In the Season 1 Rate, Season 2 Rate, Season 3 Rate and Season 4 Rate columns enter the rates.</td>
</tr>
<tr>
<td>Period 2</td>
<td>In the Season 1 Rate, Season 2 Rate, Season 3 Rate and Season 4 Rate columns enter the rates.</td>
</tr>
</tbody>
</table>
What is the Other Charges Tab?

The Database group provides Other Charges panel for entering the charges.

![Database group with Other Charges panel]

Figure 12.14 - Rate Tab and Other Charges

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Name*</td>
<td>Type in the Name for your Rate table. This is a required field and must be unique.</td>
</tr>
<tr>
<td>Description</td>
<td>Type a brief description of your Rate table.</td>
</tr>
<tr>
<td>Rate Template File</td>
<td>Select the Rate Template file. These items showing in this list comes from the 'formbill folder within E-Mon Energy™ directory/folder. The data entry area for Usage Charge and Demand Charge depends on the selection of this rate template file.</td>
</tr>
<tr>
<td>Tax Rate %</td>
<td>Group Panel.</td>
</tr>
<tr>
<td>Tax 1, 2, 3, 4</td>
<td>Type in the tax rate in percentage.</td>
</tr>
<tr>
<td>Rate Adjustment</td>
<td>Group Panel.</td>
</tr>
<tr>
<td>Adjustment 1, 2</td>
<td>Type in the adjustment rate.</td>
</tr>
<tr>
<td>Extra Rate</td>
<td>Group Panel.</td>
</tr>
<tr>
<td>1, 2, 3, 4</td>
<td>Type in the extra rate for customization purposes.</td>
</tr>
</tbody>
</table>
What are the Other Features?

In addition to the AMR schedule the user has an option to set up global schedules for load control, recorder parameters, and security access features. With these global features the user can eliminate setup redundancy for the recorder’s parameters and the security access features. The following briefly describes each of these features.

Load Control

The *Load Control* feature allows the user to setup a global *Load Control* that will set the high and low threshold set points before an alarm is activated. Each Load Control can be saved with a unique name for selection on the meter tab. Once selected, these configurations are then set to the meter. For additional information, see section on *Meters* within this manual.

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Control</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Name*</td>
<td>Type in a unique name to identify your Load Control. The name can be up to 20 characters. This is a required field. This name will be referenced in the Group and/or Location tabs of the Database window.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a description to identify the Load Control.</td>
</tr>
<tr>
<td>Threshold Set Point</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Alarm at high set point</td>
<td>Check this box if you want to enter the High Set point value.</td>
</tr>
<tr>
<td>High Set Point</td>
<td>Type in the High Set Point value.</td>
</tr>
<tr>
<td>Alarm at low set point</td>
<td>Check this box if you want to enter the Low Set Point value.</td>
</tr>
</tbody>
</table>

Figure 13.1 - Recorder Load Control
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Set Point</td>
<td>Type in the Low Set Point value.</td>
</tr>
<tr>
<td>Set point using pulse count</td>
<td>Check this box if the set point unit of measure is in raw pulses.</td>
</tr>
<tr>
<td>Ramp</td>
<td>Select or enter the seconds waited until the load control will begin checking the threshold set points.</td>
</tr>
<tr>
<td>Instantaneous one second reading</td>
<td>Check this box if you prefer to have an instant one second reading without the ramp.</td>
</tr>
<tr>
<td>Alarm Mode</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Hold Mode</td>
<td>Check this radio button if you want the alarm to be held for a period of time, once activated. This option prevents the alarm from short cycling in a fluctuated load type.</td>
</tr>
<tr>
<td>Hold Period after Ramp</td>
<td>Type in or select the seconds for the hold period after the ramp.</td>
</tr>
<tr>
<td>Grace Mode</td>
<td>Check this radio button if you want the alarm to add a grace holding period before the system will call-in.</td>
</tr>
<tr>
<td>Grace Period before Call-in</td>
<td>Type in or select the seconds for the grace period.</td>
</tr>
<tr>
<td>Activate Relay</td>
<td>Check this box if you want the relay to be controlled by the alarm.</td>
</tr>
<tr>
<td>Call in when alarm activated</td>
<td>Check this box if you want the recorder to call home when the alarm is activated.</td>
</tr>
<tr>
<td>Call in at End of Interval</td>
<td>Check this box if you want the recorder to call home at the end of the interval when the alarm is activated.</td>
</tr>
<tr>
<td>Call in Retries</td>
<td>Select the number of retries to call-in.</td>
</tr>
<tr>
<td>Maximum Call/Days</td>
<td>Select how many times you want the recorder to call home on alarm basis. Enter 0 to disable.</td>
</tr>
</tbody>
</table>

* = Required field.
Other Features

Recorder

The *Recorder* feature allows the user to set up global parameters for the Sampling Rate, Peak Demand Interval, Rolling Demand window, and the Demand Synchronized Window. For additional information, see the section on *Recorders* within this manual.

![Diagram of Recorder Parameters]

Figure 13.2 - Recorder Parameters

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorder Parameters</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Name*</td>
<td>Type in a unique name to identify your Recorder Parameters. The name can be up to 20 characters. This is a required field. This name will be referenced in the Group and/or Location tabs of the Database window.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a description to identify the Recorder Parameters.</td>
</tr>
<tr>
<td>Profile Interval</td>
<td>Select the profile interval of 5-Minute or 15-minute. This sets the sampling rate for the recorder. The sampling rate will affect the number of days that can be stored inside the recorder. When the storage is used up, the recorder will flush out the oldest data on a day block basis. This is also known as FIFO (first-in-first-out).</td>
</tr>
<tr>
<td>Peak Demand</td>
<td>Select the Peak Demand window of 15-minute, 30-minute, or 60-minute. This selection will affect the calculation for peak demand.</td>
</tr>
<tr>
<td>Rolling Demand</td>
<td>Select the Rolling Demand window of 5-minute, 15-minute, or Reset at EOI. This selection will affect the calculation for peak demand. Note: The Rolling Demand window cannot be less than the Profile Interval.</td>
</tr>
<tr>
<td>End of Interval</td>
<td>Select the End of Interval signal using Built-in Clock or External Clock. Note: Some hardware does not support an External Clock.</td>
</tr>
<tr>
<td>Time Adjustment</td>
<td>Select Time Adjustment for synchronizing the recorder/meter clock with the PC clock. When the time is within this range, E-Mon Energy™ will set the recorder/meter clock to the same time as the PC.</td>
</tr>
</tbody>
</table>
Other Features

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Select the Time Zone where the recorder/meter is installed. E-Mon Energy™ uses the PC time zone along with recorder/meter time zone when adjusting the time. It is very important that both time zones are set up correctly, otherwise incorrect time adjustment will occur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable DS Time</td>
<td>Check this box to enable automatic Day Light Savings Time adjustment.</td>
</tr>
</tbody>
</table>

* = Required field.

Security

The Security feature allows the user to setup a global password in order to access the devices. Once the Password(s) are created the user can save and synchronize them with the devices. All passwords allow a maximum of 8 characters.

Note: This feature may not be accessible to everyone. You must have administrator rights.

![Database Access](image)

Figure 13.3 - Recorder Security Password

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password Definitions</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Name*</td>
<td>Type in a unique name for your password setup. This is a required field. This name will be referenced in the Group and/or Location tabs of the Database window.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a description for your password setup.</td>
</tr>
<tr>
<td>Password</td>
<td>Panel Group</td>
</tr>
<tr>
<td>Administrator</td>
<td>Limited access to configurations. Type in the Administrator password. Then retype to confirm the password. Must be 8 characters. Note: When changing password, remember to never change the Administrator rights. The Administrator should always have “Full” Access.</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>Full access to all functions. Type in the Unrestricted password. Then retype to confirm the password. Must be 8 characters</td>
</tr>
<tr>
<td>Read/Bill</td>
<td>Limited access to Read and Bill functions. Type in the Read/Bill</td>
</tr>
</tbody>
</table>
Other Features

| Read Only | Limited access to Read Only functions. Type in the Read Only password. Then retype to confirm the password. Must be 8 characters |

* = Required field.
What Is the Access Location?

The Access Location is the primary link between E-Mon Energy™ software and the physical devices. In the Access Location you will:

- Establish a connection to the devices.
- Set up new hardware.
- Read and verify hardware.
- Monitor real-time load and power usage.
- Download interval data from the devices.
- Access the database for the location.

The Access Location window is divided into groups – Function, Hardware to Access, and Connection Control. The Function and Hardware to Access groups are available when you are online with the location: Click the Connect button to start the connection. The illustration below shows the Access Location window with the Functions and Hardware to access groups. Note: If you are not online, the function selections will be disabled.

Figure 14.1 - Access Location Window

What Are the Functions?

The Functions are a collection of tasks to perform when accessing the hardware. The Functions are divided into seven high-levels. Under each of these high-level functions are sub-tasks, which manage and control the hardware. This section will describe each of the seven high-level functions and their sub-tasks.

Connection Control

Before a connection is made with the hardware, the user must first set a location. This means the devices you want to connect to must first be selected as the location before connecting. There are two ways to set a location. The first way is from the main menu by selecting Hardware, then Set Location. The Select Location dialog will open prompting you to select a Location, then click on the Set button.
The second way is to select a location from the Device Explorer and right-click to display the Set Location menu and select a location. See illustration below.

After you have set the location, you must connect to the devices in order to communicate. Here you also have two options, either through the Select Location dialog or wait until the Access Location window opens, then in the Connection Control group area, click on the Connect button.

To stop communication and disconnect from the devices you can click the Disconnect button located in the Connection Control group or just click Cancel Dial.
Read Hardware Functions

Now that you are connected to the hardware (devices) you will want to read meters, check and clear any flags, check the profile status and versions, or download interval data from the devices. This section describes each of the Read Hardware functions. The following explains each column of data returned from the devices.

Read Meters Button

Reading the meters is a way to see the energy usage and peak demands of the meter. The meters are broken up into various periods. The illustration below displays the KWH and peak demands as totals and then it is broken down by periods. For complete instructions, see the Meter section within this manual.

Note: Before reading the meters you may want to set up a schedule. See the Rate Table and TOU schedule section within this manual for details.

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>This column displays the condition of the device: If the condition states “Bad,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>Total for all Periods</td>
<td>Usage – This column displays the total Usage for all the periods. The number represents the total accumulation since it was last reset. Demand – This column displays the Peak Demand across all the periods. The number represents the highest rate of consumption in the specified demand window time period, since it was last reset. Typically, the Peak Demand is reset every billing cycle (i.e. monthly). E-Mon Energy™ does not use this demand for generating bills. It will create demand readings from the interval data (profile).</td>
</tr>
<tr>
<td>Period 1</td>
<td>Usage – This column displays the Usage for the period (i.e. period 1). The number represents the total accumulation since it was last reset. Demand – This column displays the Peak Demand for the period (i.e. period 1). The number represents the highest rate of consumption in the specified demand window time period, since it was last reset. Note: If you have multiple periods, the readings will be displayed in the remaining columns.</td>
</tr>
</tbody>
</table>
Flag Status Button

The *Flag Status* provides an alert in the E-Mon Energy™ software of a problem or power failure. The two failures illustrated below indicate the date and time of the last failure. The *Power Failure Status* indicates that the IDR has lost power at some point. To reset (clear) the flags, click on the **Clear Flag** button. For complete instructions, see *Error Flag* section within this manual.

![Figure 14.8 - Access Location Function – Flag Status](image)

Columns	**Description**
Status | This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.

Power Failure Status | This column displays the total number of Power Failures and the date/time of the last occurrence, since it was last reset. In this example, there were more than 15 power failures and the last time occurred on 12/30 at 15:44.

Tamper Alarm | This column displays an active <on> flag when a door is open on the recorder. If the Tamper Alarm is not on, the column will display <off>.

O'Load (Over Load) | This column displays an overload flag when the meter has excessive amperage (i.e. 200 amp load through the sensors on a 100 amp meter). When no problem exist the column display <none>.

Power | This column displays any general power/voltage errors with the meter (i.e. low, noisy or unstable). Low = voltage drop below nominal level, noisy = dirty power supply, harmonics) unstable = fluctuating levels. When no problems exist, the column displays <normal>.

MTR Reg | This column displays any malfunctions with the recorder real-time clock (i.e. <Bad>). When no problems exist, the column displays <ok>.

IDR State | This column will display any problems that may exist with the functionality of the IDR. When no problems exist, the column displays <ok>.
Profile Status Button

The Profile Status tells us when and how far into the “Moving” window we are before we need to upload the current sampling rate data from the Recorder. It also tells us how many days we have left before data will be lost. The following describes each column of data returned from the devices.

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>Start Date</td>
<td>This column displays the date and time of the first day block that is currently in the data recorder storage. If all day blocks are used, this date/time will start to flush the oldest data out making room for new data.</td>
</tr>
<tr>
<td>Days</td>
<td>This column displays how many day blocks of interval data are stored.</td>
</tr>
<tr>
<td>Rate</td>
<td>This column displays the sampling rate. Typically, we default to 15-minute interval storage.</td>
</tr>
<tr>
<td>State</td>
<td>This column displays the current profile status. It should always be “on”.</td>
</tr>
<tr>
<td>Downloaded Thru</td>
<td>This column displays the last time you downloaded the data.</td>
</tr>
<tr>
<td>To Avoid Data Lost</td>
<td>This column is a “Reminder” which displays how many days are remaining until a required download is needed.</td>
</tr>
</tbody>
</table>

Figure 14.9 - Access Location Function – Profile Status
The illustration below indicates that an immediate download is required. It is recommended not to exceed the required window span (days) before downloading. If so, the oldest profile data will be lost.

![Access Group 01 Location 213](image)

Figure 14.10 - Access Location Function – Profile Status with Error

Version/Time Button

The *Version and Time* tells us about the firmware of the devices, current calendar, and time zone.

![Access Group 01 Location 254](image)

Figure 14.11 - Access Location Function – Version/Time

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>Version</td>
<td>This column displays the firmware version of the device.</td>
</tr>
<tr>
<td>Release</td>
<td>This column displays the release date for the firmware.</td>
</tr>
<tr>
<td>Day</td>
<td>This column displays the current calendar day of the device clock.</td>
</tr>
<tr>
<td>Date</td>
<td>This column displays the current calendar date of the device clock.</td>
</tr>
<tr>
<td>Time</td>
<td>This column displays the current local time of the device.</td>
</tr>
<tr>
<td>Time Zone</td>
<td>This column displays the current time zone of the device.</td>
</tr>
<tr>
<td>DL Savings</td>
<td>This column displays the daylight savings setting. “Enable” means the clock follows daylight saving time. (This option may not pertain to every country and may only pertain to the United States.)</td>
</tr>
<tr>
<td>Date/Time Check</td>
<td>This column displays any errors that may occur with the date and/or time.</td>
</tr>
</tbody>
</table>
Verify Hardware Functions

E-Mon Energy™ software can verify the configurations of the recorder, meter, and AMR schedule. It queries the configurations programmed in the recorder and compares it to the information stored in the database. This acts as a maintenance feature to check the status and functionality of the devices. To verify the devices, the user can open the Access Location window under Verify Hardware. The following describes each column of returned data from the devices.

Verify Recorder Button

The Verify Recorder tells us if the status, profile mode, and demand interval are functioning properly. If a recorder configuration mismatch occurs, a warning will display in this window. The illustration below shows the recorders functioning properly.

![Verify Recorder Window](image)

Figure 14.12 - Access Location Function – Verify Recorder

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>Prof (Profile) Sample</td>
<td>This column displays the profile data interval.</td>
</tr>
<tr>
<td>Dmd Int (Demand Interval)</td>
<td>This column displays the peak demand interval period.</td>
</tr>
<tr>
<td>Dmd (Demand) Window</td>
<td>This column displays the peak demand interval calculation.</td>
</tr>
<tr>
<td>Dmd Sync (Demand Synchronize)</td>
<td>This column displays the signal used to indicate the end of an interval. At the present time, we support an “internal” built-in clock.</td>
</tr>
<tr>
<td>Warnings</td>
<td>This column displays any alarms and/or configuration errors with the recorder. Note: E-Mon Energy compares settings programmed into the recorder with settings stored in the database. They should be identical.</td>
</tr>
</tbody>
</table>
Verify Meters Button

The Verify Meter tells us the condition and if the services are functioning properly. If a meter configuration mismatch occurs, a warning will display in this window. The illustration below shows that the Meters are functioning properly.

![Access Location Function – Verify Meters](image)

Figure 14.13 - Access Location Function – Verify Meters

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>ID</td>
<td>This column displays the meter ID number.</td>
</tr>
<tr>
<td>Volt</td>
<td>This column displays the rated voltage setting.</td>
</tr>
<tr>
<td>Amp</td>
<td>This column displays the rated amperage setting.</td>
</tr>
<tr>
<td>CTS</td>
<td>This column displays the number of sets of current sensors.</td>
</tr>
<tr>
<td>Pulse</td>
<td>This column displays the pulse input type setting (i.e. 50/50, Run-hour, Analog).</td>
</tr>
<tr>
<td>Mfg (manufacture)</td>
<td>This column displays the manufacture name of the meter.</td>
</tr>
<tr>
<td>Type</td>
<td>This column displays the type of service of the meter (i.e. Electric, Gas).</td>
</tr>
<tr>
<td>Mult (Multiplier)</td>
<td>This column displays the meter multiplier.</td>
</tr>
<tr>
<td>Pul (Pulse) Factor</td>
<td>This column displays the meter pulse factor setting.</td>
</tr>
<tr>
<td>CT/PT</td>
<td>This column displays the “current transformer” and “potential transformer” setting.</td>
</tr>
<tr>
<td>Warnings</td>
<td>This column displays any alarms and/or configuration mismatch with the meter. Note: E-Mon Energy™ compares settings programmed into the meter with settings stored in the database. They should be identical.</td>
</tr>
</tbody>
</table>
Verify AMR Button

The *Verify AMR* tells us the schedule, call-ins, and if the AMR is enabled and functioning properly. If an AMR configuration mismatch occurs, a warning will display in this window. The illustration below shows a schedule functioning properly.

Figure 14.14 - Access Location Function – Verify AMR

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>AMR Schedule</td>
<td>This column displays the AMR schedule setting.</td>
</tr>
<tr>
<td>Retry</td>
<td>This column displays the number of retries the recorder will attempt, should the call fail to go through the first time.</td>
</tr>
<tr>
<td>Enable AMR</td>
<td>This column indicates if the Automatic Meter Reading is “enabled” or “disabled.” Enable allows the recorder to automatically call home at the programmed AMR Schedule. Note: Only recorders with ID code “1A” are capable of calling home.</td>
</tr>
<tr>
<td>Warning</td>
<td>This column displays any alarms and/or configuration errors for the AMR setting. Note: E-Mon Energy™ compares settings programmed into the recorder with settings stored in the database. They should be identical.</td>
</tr>
</tbody>
</table>
Setup Hardware Functions

When the devices are on-line, they are required to send commands and receive information to and from the devices while they are scanning, initializing, clear readings and updating the database. E-Mon Energy™ software provides you with an Access Location window to configure the recorder and meters under Setup Hardware. The following describes each column of data returned from the devices.

Scan Recorder Button

The Scan Recorder is used to look for new recorders/meters and to check existing recorders/meters to ensure they are functioning correctly. If a problem occurs with the connection or a mechanical malfunction, the column under the device will display “Bad.” The illustration below shows that the existing recorders and meters are functioning properly.

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorder</td>
<td>This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>Meter 1 - Meter 8</td>
<td>This column indicates communication with meters has been established and the operation status is ok. If the meter column is showing “bad,” check the meter wiring and ensure the meter is powered.</td>
</tr>
</tbody>
</table>

Clear Meter Button

At some point, you may want to reset the meter readings to zero for usage and/or demand displays. This function can be accessed from the Setup Hardware function using the Clear Meter button. From the Clear Meter Readings dialog, you can select “all meters for the recorder” just “one of the eight,” or “all the meters at the location.”

Figure 14.15 - Access Location Function – Verify Scan Recorder

Figure 14.16 - Access Location Function – Clear Meter Reading
Initialize Recorder Button

As explained in the Recorder section of this manual, initializing a recorder is seldom done except for during system startup or when adding a new recorder. When initializing, the parameters are set to the default, the register is cleared from the recorder, and the meter display is cleared as well. This is done from the Setup Hardware function by clicking on the Initialize Recorder button. A dialog window will open that allows you to reset the Recorder to its factory default settings.

![Initialize Recorder to factory defaults dialog](image)

Figure 14.17 - Access Location Function – Initializing Recorder

Update Database Button

After scanning the device, the database may need to be updated to add or remove a device. The table column will indicate a condition state of “new” or “bad.” If either of these conditions occurs, the Update Database button will become available to access. The illustration below shows that Meter 4 is bad and we want to remove it from the database since the meter is no longer needed for service.

![Update Database Access Location](image)

Figure 14.18 - Access Location Function – Update Database

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorder</td>
<td>This column displays the condition of the device. If the condition states “Bad” or “Timeout,” there is a possible error in reading the device and there may be a hardware or communication issue. If the condition is “ok,” the hardware is functioning normally.</td>
</tr>
<tr>
<td>Meter 1 thru 8</td>
<td>This column displays the condition of the device. If the condition states “Bad,” there is possible error with the device and may be a hardware issue.</td>
</tr>
</tbody>
</table>
The Update Database drop-down window will display any new or bad devices. The new devices can be added to the database by using the bi-directional buttons between the two list boxes. The bad devices can be removed by using the bi-directional buttons to delete them from the database. Once the devices are added or removed, the user can update the database by clicking the Update Database button.

Access Database Functions

E-Mon Energy™ software provides you with the Access Database to modify, save, and send device information to the recorders or meters at the location. Individual procedures and steps on how to setup information can be found within the Recorder or Meter section of this manual.

Note: Modifications to the devices are restricted to the selected location.
Load Graph Functions

E-Mon Energy™ software provides a real-time *Load Graph* that plots meter load as a ratio of the average load per minute. The real-time *Load Graph* can monitor up to eight meters from within the current location. The *Load Graph* screen can be viewed by clicking on the *Load Graph* radio button at the top of the window. For information on how to use the Load Graph, see the *Real-Time Load Graph* section.

![Figure 14.21 - Access Location Function – Load Graph](image)

Power Graph Functions

E-Mon Energy software provides real-time *Power Graph* that displays different graphs for phase voltage, Amps, Phase Angles, PF%, kW, kVA, and kVAR. The *Power Graph* screen can be viewed by clicking on the *Power Graph* radio button at the top of the window. For information on how to use the Power Graph, see the *Real-Time Load Graph* section.

![Figure 14.22 - Access Location Function – Power Graph](image)
What Are the Error Flags?

Most error flags indicate that a problem or event has occurred in the system. In E-Mon Energy™, the error flags indicate a problem or an event with either the communications, devices, or data. With E-Mon Energy, the error flags are divided into categories: Connection, Protocol, Profile, or Billing.

What Is a Connection Error?

The Connection Errors usually indicate that communication has been lost either locally or remotely to the meter or recorder. These errors can vary from “Auto Answer Setup Failed to get Comport.” These error flags appear in either a dialog message or the status bar area. The dialog messages usually indicate that you must respond by clicking the OK button to confirm. The status bar error messages usually mean that you may need to fix or reset the hardware before clearing the flag. The illustrations below show a dialog message error and a status bar message error.

Figure 14.1 - Connection Dialog Error Message

Figure 14.2 - Connection Status Bar Error Message

What Is a Protocol Error?

The Protocol Errors are usually high level errors that occur between the request and response of messages transferred to and from the meters and recorders (IDR/Class 3000). These types of errors usually require technical personnel to resolve them due to the high level commands that must initiate through a terminal to the device.

What Is a Profile Error?

The Profile errors are problems that occur with the recorder or the meter due to incorrect download data such as the recorder (i.e. “Err: missing day block or meter not found in DB (database).” These types of errors also appear in either a dialog message or the status bar. The illustration below shows a dialog message error.

Figure 14.3 - Profile Dialog Error Message
What Is a Billing Error?

The Billing errors are usually caused by invalid information which does not allow the Billing process to continue. These error messages can be a dialog error message or a display on the generated consumption spreadsheet (shown in red print as an error prior to generating a bill).

![Billing Dialog Error Message](image)

Figure 14.4 - Billing Dialog Error Message

![Spreadsheet-Meter Consumption for Billing](image)

Figure 14.5 - Spreadsheet-Meter Consumption for Billing

How Do I resolve Error Flags?

With most problem resolving, it is a matter of either resetting the device or entering the proper information. If you are not sure how to resolve an error, please call our technical support team.

If at any time you need assistance, please contact our Technical Support at 1-800-334-3666.

All our error codes have a code number to identify the problem, when calling our technical support team please have the code handy to provide to our support personnel. For a complete list of errors, codes and solutions see our Troubleshooting and Appendix C Section within this manual.
What Is a Flag Status?

The Flag Status is the condition of a meter within E-Mon Energy™. With most of our meters (IDRs) we provide several features that are actually built into the meter, like the tamper alarm. With E-Mon Energy, we can view a problem or an error by simply accessing the group and viewing the hardware. The Flag Status function is accessible through the Access Location window, under the Read Hardware function. From this view a user can access the condition of a meter by clicking on the Flag Status button. These flag errors are usually displayed in red and range from power failure, load, tamper, and the current state of the meter. The illustration below shows a Power Failure.

![Figure 14.6 - Access Group Flag Status](image)

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag Status</td>
<td>This button allows you to access the meter’s current condition regarding flags.</td>
</tr>
<tr>
<td>Status</td>
<td>This field displays the condition of the Meter. If the condition states “<Bad>”, there is no connection and there may be a serious problem. If the condition is <ok>, then communication is enabled with the meter.</td>
</tr>
<tr>
<td>Power Failure Status</td>
<td>This field will display any power failures at any point with the meter. If the voltage drops past the required power factor threshold a flag will display how many times it has occurred (i.e. >15), the last time it occurred by date (i.e. 12/30), and the last reading recorded (i.e. 15.44). When no power failures exist, the field will display <none>.</td>
</tr>
<tr>
<td>Tamper Alarm</td>
<td>This field will display an active <on> flag when a door is open on the meter. If the Tamper Alarm is not on, the column will display <off>.</td>
</tr>
<tr>
<td>O’Load (Over Load)</td>
<td>This field will display an Overload flag when the meter has excessive amperage (i.e. 200 amps through the sensors on a 100 amp meter). When no problems exist, the field displays <none>.</td>
</tr>
<tr>
<td>Power</td>
<td>This field will display any general power/voltage errors with the meter (i.e. low, noisy or unstable). Low = voltage drop below nominal level, noisy = dirty power supply, harmonics, unstable = fluctuating levels. When no problems exist, the field displays <normal>.</td>
</tr>
<tr>
<td>MTR Reg</td>
<td>This field will display any malfunctions with the internal meters real-time clock (i.e. <Bad>). When no problems exist, the field displays <ok>.</td>
</tr>
<tr>
<td>IDR State</td>
<td>This field will display any problems that may exist with the functionality of the IDR. When no problems exist the field displays <ok>.</td>
</tr>
</tbody>
</table>
How Do I Check and Clear a Flag Status?

Checking the Flag Status

To check the flag status:

At this point you have a connection to the Group Devices

1. Click on the Read Hardware radio button.
2. Click on the Flag Status button. E-Mon Energy™ will check the recorder for any potential errors and post a flag. Note: If any columns within the grid show a “Red” flag, this indicates a problem or failure.

![Figure 14.7 - Flag Status Error](image)

The flag shown in the above illustration is a Power Failure. A Power Failure indicates that the meter has lost power at some point. The Power Failure Status displays the last power failure date and time.

Clearing a Flag Status

To clear a flag status:

3. After correcting the failure, you can reset and clear the flags by clicking on the Clear Flag button. The columns will reset to normal conditions.
What Is the Demand Profile Graph?

The Demand Profile Graph is a graphic view of the meter’s energy usage (or demand) over a specific time interval. E-Mon Energy™ will plot the graph, which is based on downloaded interval data, for up to eight meters with any combination of groups and locations. E-Mon Energy can display demand intervals of 5, 15, 30, or 60 minutes, depending on the setup of the device parameters. The software plots the rise and fall of the load as Kilowatts in relation to date and time. The Demand Profile Graph window is interactive, allowing the user to customize different views. The graph views include:

- **Default View** – Displays the load as KW based on time and date from highest to lowest point.
- **Chopper View** – Displays the load as KW based on a vertical bar that is color-coded to indicate load levels. The very top of the bar provides the intensity of the color for the load range. The vertical axis (y-axis) lists the day number. The “from” day is at the bottom of the bar, going up to the “to” day at the top of the bar. Each day slice of the bar has a horizontal axis (x-axis) that lists the hour of the day. Midnight is shown at the left of the bar, covering the 24-hour day as it goes across to the right.

![Default View and Chopper View](image)

Figure 16.1 - Default View and Chopper View
How Is the Data Stored?

E-Mon Energy™ retrieves the interval data (demand and energy related data) from the devices and stores it in a database file. The data is downloaded using the Access Location window from each of the devices. Once the interval data is stored, it can be used to create load profile graphs to analyze energy usage and/or create billing statements. The illustration below shows the interval data retrieved from the devices, stored, and viewed.

What Is the Statistics Table?

Besides using the load profile graph view, the user can analyze the statistical energy data for the time period they select. The energy data populates onto the Statistics Table, which displays the Total Energy Usage, Average Daily Demand, Peak Demand, and Date/Time of the peak. The table also acts as a legend for the profile graph, indicating each meter plot in a different color. The only way to clear the table is to right click on the grid area and select “Delete this plot” or “Delete All”. The following illustration shows a populated Statistics Table.

<table>
<thead>
<tr>
<th>Meter</th>
<th>Date/Time</th>
<th>Total kWh</th>
<th>Avg kW</th>
<th>Peak kWh</th>
<th>Peak Time</th>
<th>P. Val</th>
<th>Meter Name/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st dm</td>
<td>06/26/1992</td>
<td>453.50</td>
<td>22.65</td>
<td>103.25</td>
<td>06/26/04 06:15</td>
<td>30032</td>
<td>81.264</td>
</tr>
<tr>
<td>2nd dm</td>
<td>06/26/1992</td>
<td>125.50</td>
<td>10.50</td>
<td>95.50</td>
<td>06/26/04 07:30</td>
<td>10032</td>
<td>81.264</td>
</tr>
<tr>
<td>3rd dm</td>
<td>06/26/1992</td>
<td>144.75</td>
<td>28.65</td>
<td>219.94</td>
<td>06/26/04 06:30</td>
<td>30032</td>
<td>81.264</td>
</tr>
</tbody>
</table>

Total kWh 122295.2 41.26 212.16 06/26/04 06:00

Figure 16.3 - Demand Statistics Table

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total kWh</td>
<td>This column displays the Total Energy Usage (Kilo Watt Hour).</td>
</tr>
<tr>
<td>Avg. kW</td>
<td>This column displays the Average Daily Energy Demand.</td>
</tr>
<tr>
<td>Peak</td>
<td>This column displays the highest energy demand (Peak Demand).</td>
</tr>
<tr>
<td>Peak Time</td>
<td>This column displays the date and time of highest demand (Peak Date/Time)</td>
</tr>
<tr>
<td>P. Val</td>
<td>This column displays the Pulse Value, (i.e. W/Hrs per pulse for electricity).</td>
</tr>
<tr>
<td>Meter Name</td>
<td>This column displays the Meter Name that is inherited from the database.</td>
</tr>
</tbody>
</table>
Can I Export the Interval Data to Other Applications?

Yes. E-Mon Energy™ has the capability of exporting data as a Comma Separated File (CSV file extensions) as well as other compatible spreadsheet applications. To export the data for the selected device, you must have selected from the main menu bar File to Export Graph Data as CSV or Export Graph Data. At this point, a save dialog box will open to save the file.

Can I Change the Graph Display View?

Yes. E-Mon Energy provides several graph options to view different plot styles. From the main menu, select Graph then Display Option to open the dialog. There are several display options to choose from – Line, Stacked Bar, Stacked Area, Bar, and Area. The illustration and table below describes each of the graph options.
Can I See the Data in a Pie Chart?

Yes. By double-clicking on the data point, a pie chart will open. The chart below shows the percentage of each meter graphed, which contributes to the total kW demand registered at the time chosen. The date/time of the period is shown at the top of the window. On the right-hand side of the window is the Show group, by selecting the radio button marked Values, the actual values in kW will be shown instead of the percentages. A Print button is provided if you wish to print the pie chart.

![Pie Chart View](image)

Figure 16.6 - Pie Chart View

Can I Print the Graph?

Yes. You can print just by selecting **File > Print** from the main menu.

![Print Graph Menu](image)

Figure 16.7 - Print Graph Menu
How Do I Load a Profile and Generate a Demand Profile Graph?

To Load a Profile

To load a profile:

1. From the **E-Mon Energy™** explorer window, click and select **Graph/Load Profile** from the drop-down menu. The following illustration shows the Load Profile Graph displays.

![Load Profile Graph](image1)

2. In the **From** (date) field, click on the drop-down arrow, then select a day, month, and year to **start** plotting the meters.

![Time Period Calendar](image2)

3. In the **To** (date) field, click on the drop-down arrow, then select the day, month, and year to **stop** plotting the meters.

4. In the **From** (time) field, select the time (hrs: min: see AM/PM) to **Start at**:
Click and type inside the text box to change each time increment or click on the ▲ up ▼ down arrows to adjust the time frame for each increment.

Note: The Start Time cannot exceed the End Time.

5 In the To (time) field, set the time (hrs: min: sec: AM/PM) to Stop at.

6 In the shaded device directory, select a Group, click and drill-down to the Recorder Level. Then click and drag to the Meter Level, if you wish to graph a single meter.

Figure 16.10 - Demand Profile Device Selection

7 Right-click on the Recorder ID and highlight it, then left-click on Graph this Device button. The illustration below shows a statistic table populated with all the meters within the selected recorder.

Note: Each Meter is shown with a specific color to correspond with the plot number.
Demand Profile Graph

Figure 16.11 - Demand Profile Statistic Table

Plotting the Graph

8. Click on the **Get Graph** button. The statistic table refreshes and populates with the Total KWH, Average KW, Peak, and Peak Time during the selected Time Period. The graph above plots the rise and fall of the load as KWs on a Date/Time frame. Above the plotted graph it displays the meter ID(s) and color code.

Figure 16.12 - Demand Profile Graph
9 To expand the graph for a clearer view, click, hold, and drag your mouse within the graph area. Note: A gray vertical line will appear and the mouse pointer will change to a magnifying glass. See illustration of Expand View (1 and 2) below.

Figure 16.13 - Demand Profile Graph Expand View (1)

Navigating in the Graph

In the Zoom view, use the scroll arrows/bar to view the whole entire graph from left to right.
To return to the original graph size, right click within the graph area, and select *Undo Zoom* from the drop-down menu.
Note: The other drop-down menu items are not supported at this time.
Demand Profile Graph

Figure 16.15 - Demand Profile Graph- Undo Zoom Feature

Other viewing options are:

Device Explorer – Uncheck to remove Device Explorer from window view.
Statistics – Uncheck to remove Statistics Table from window view.
Default View – Click to change the graph view to a line graph. Note: This is the default graph view.
Chopper View – Click to change the graph view to a Daily Demand view based on your Time Period selection.
Prev Locn – Click to return to the previous location within the Device Explorer to view other meter locations.
Next Locn – Click to go to the next location within the Device Explorer to view other meter locations.

Printing a Graph

1. To print a graph, click and select File/Print from the drop-down menu.
2. Select Use default printer or Customize to customize the printer setup.
3. Click the OK button to print or the Cancel button to exit.

Figure 16.16 - Print Graph Dialog
Exporting Graph Data

1. To export graph data as a CSV (common-separated variable) file, select **File/Export Graph Data as CSV**. A **Save As** dialog opens to save with a CSV extension.
 Note: The CSV file format is used to exchange data between different applications (i.e. MS Excel).

2. Enter a **File Name** and click the **Save** button.

 ![Figure 16.17 - Export Graph Data as CSV Menu](image1)

3. To export graph data in other formats, select **Export Graph Data**. An **Exporting Demand Profile** dialog opens.

 ![Figure 16.18 - Export Graph Data Menu](image2)

4. Select an Export format. The **Exporting Demand Profile** dialog displays several format options to use. Metafile, BMP, JPEG, PNG, and a Text delimited file that can be imported into a spreadsheet.

5. Select an **Export Destination** location (to a Clip Board, as a File, or send to a Printer).

6. If saving as an image, select the object size or Pixel.

7. Click on **Export** to save the file and complete the file parameters.

8. To Print the graph image, click on **Print**. (The print button appears when the Printer radio button is selected)

 ![Figure 16.19 - Exporting Demand Profile Dialog](image3)
Creating a Pie Chart

1. To open a Pie Chart view from the graph, move the cursor to the area where you wish to view the pie chart. When the cursor changes to a hand sign, click the mouse button.
 Note: Select from any two viewing options: Percent or Value.

![Pie Chart](image1)

Figure 16.20 - Pie Chart

2. Click the Print button to print the pie chart, or click the Close button to exit.

![Print Pie Chart Graph](image2)

Figure 16.21 - Print Pie Chart Graph
Selecting Graph Options

1. From the **Graph** drop-down list, select **Display Options**. The **Graph Options** dialog will open.

2. Select the Plot Style for the Graph (Line, Stacked Bar, Stacked Area, Bar, and Area).
 Note: The Line Style is the default setting for the graph.

![Graph Options Dialog](image)

Figure 16.22 - Graph Viewing Options

3. Select the **Data Values** (Calculated with pulse value or Pulse Count).
 Note: Calculated with pulse value is the default.

4. Select the **Grid Lines** (None, Horizontal, Vertical, or Both).
 Note: This is an option.

5. Select **Misc.** (Black Background, Crosshair Cursor, or Large Font)
 *Note: The **Black Background** is used mainly for viewing purposes; Crosshair Cursor is useful in locating specific spots on a graph; and the Large Font changes font size on the profile screen.*

6. Click **OK**, or click **Cancel** to exit the dialog.
What Is the Real-Time Load Factor?

The Real-Time Load Factor is a graph that provides information on the current KW load. The Real-Time Load Factor graph plots meter load at a refreshing rate of once per minute. The Real-Time Load Graph can monitor up to eight meters from any combination. Refer to the Power Graph function if you need to graph for phase voltage, Amps, Phase Angles, Power Factor, KW, KVA, and/or KVAR.

The Load Factor Graph is available under the Access Location window and is comprised of three elements – the Load Factor Graph, Access Device Explorer, and the Statistic Table. Each device is plotted with different colors and shown with its ID number and color above the graph. The graph will plot the different devices in their assigned color.

The illustration below shows a Load Factor Graph.

![Figure 17.1 - Load Factor Graph](image)

What Is the Access Device Explorer?

Under the graph is a green list box. This is referred to as the Access Device Explorer. The device explorer is used to select the device(s) to graph and display. The user can right click on the location or individual devices, then select Graph this Device from the popup menu. This right-click option allows you to populate the data into the Statistic Table of the current meter data.
What Is the Statistic Table?

The Statistic Table is a chart that provides a real-time data view of each device in tabular representation – KW, Percentage Load, Peak, Peak Time, P. Val (Pulse Value), Max PPM (Pulse Per Minute), and Meter Name. The table acts as a legend for the graph, with each device color-coded under the plot column. These colors can be associated with the graph. To clear the table, right-click on the grid area and select “Delete this plot” or “Delete All”. The following illustration shows a populated Statistic Table.

Figure 17.2 - Statistic Table

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KW</td>
<td>This column displays the instantaneous KW demand, which is updated every minute.</td>
</tr>
<tr>
<td>% Load</td>
<td>This column displays the percent of rated load of the particular meter. (i.e. a meter has an amperage rating of 200 amps. The % Load column shows 10 %. This means that 20 amps is the current draw.)</td>
</tr>
<tr>
<td>Peak</td>
<td>This column displays the maximum Kilo-watts for each meter since the graph started.</td>
</tr>
<tr>
<td>Peak Time</td>
<td>This column displays the date and time of the Peak kW within 15 minutes.</td>
</tr>
<tr>
<td>P. Val</td>
<td>This column displays the rated Pulse Value for the meter.</td>
</tr>
<tr>
<td>Max PPM</td>
<td>This column displays the rated Maximum Pulse Per Minute.</td>
</tr>
<tr>
<td>Meter Name</td>
<td>This column displays the Meter Name as specified in the database.</td>
</tr>
</tbody>
</table>

The data cannot be populated into the table until the Start Load Monitor button is selected. Once selected, the table will populate and the Load Factor Graph will begin to move and chart the KW load in minutes. A scroll-bar is provided to move left or right to review previous data or view actual recorded measurements.
What Is the Power Graph?

The Power Graph is a graph that provides information on power quality. The Power Graph displays different power measurements. The user can view each measurement by clicking on the radio button next to each power measurement (Phase Voltage, Phase-Phase Voltage, Amps, Freq. Hz, PH. Angles, PF%, KW, KVA and KVA). Above the graph is a table grid that displays the real-time power phases (Phase A, B, and C) along with the Total for some of the measurements. The user has an option on which real-time power phases and totals to view by clicking on the corresponding check box. To run the Power Graph, a recorder (Class 3000 or MeterSmart 5000) device must be first selected from the Just One drop-down field under the Hardware to Access group. Once the device is selected, you can begin monitoring by clicking the Start Power Monitor button. The illustration below shows a Power Graph.

![Power Phase Voltage Graph](Figure 17.3 - Power Phase Voltage Graph)

Can I Change the Graph Display View?

Yes, E-Mon Energy™ provides Graph Viewing Options to plot different styles. This feature is accessible from the main menu under Graph, then from the Graph drop-down menu select Display Option. There are several display options to choose – Line, Stacked Bar, Stacked Area, Bar, and Area. See the Demand Graph section for definitions of each radio buttons.

![Graph Options](Figure 17.4 - Graph Options)
How Do I Load the Real-Time Load Factor Graph?

To Load the Real-Time Load Factor Graph

1. From the E-Mon Energy™ menu, click and select Hardware\Set Location from the drop-down menu. The Select Location dialog opens.

 ![Hardware\Set Location Menu](image1)

 Figure 17.5 - Hardware\Set Location Menu

2. From the Group drop-down list, select a Group.

 ![Select Location](image2)

 Figure 17.6 - Select Location

3. From the Location drop-down list, select Location you want to communicate with and scan.

4. Click on the Connect button. The Access Location window opens.
 Note: The Group and Location displays in the window’s bar/status area.

 ![Access Location Window](image3)

 Figure 17.7 - Access Location Window

5. Click on the Load Graph radio button and the Load Factor graph will display.
Real-Time Graphs

From the **Device Explorer** list box, drill down and right-click on the Recorder ID, then click on **Graph this Device**. The **Statistic Graph** will populate with the meter data.

Click **Start Load Monitor**. The Load Factor graph displays real-time load in minutes.

Figure 17.8 - E-Mon Energy™ Load Factor Graph – Real-Time

Figure 17.9 - Device Explorer - Get Device
To Load the Power Graph

1. Click on Power Graph. The graph below switches to a Phase Voltage graph.
2. Click Cancel to exit the graph.
How Do I Use the Display Options?

How to Use the Display Options?

To use the Display options:

1. From the Graph drop-down list, select Display Options. The Graph Options dialog will open.

2. Select the Plot Style for the Graph (Line, Stacked Bar, Stacked Area, Bar, and Area).
 Note: The Line style is the default setting for the graph.

3. Select the Data Values (Calculated with pulse value or Pulse Count).
 Note: Calculated with pulse value is the default.

4. Select the Grid Lines (None, Horizontal, Vertical, or Both).
 Note: This is an option.

5. Select Misc (Black Background, Crosshair Cursor, or Large Font).
 Note: The Black Background is used mainly for viewing purposes, the Crosshair Cursor is useful in locating specific spots on a graph, and the Large Font changes the font size on the profile screen.

6. Click OK, or click Cancel to exit the dialog.
Section 18

Billing and Reports

What Is the Billing Function?

The Billing function supports real-time consumption, flat rate billing, rate changes, tier rates, pre-defined tax rates and miscellaneous billing charges. The billing function in E-Mon Energy™ allows you to customize your bill schedule by choosing from a variety of schedules and tiered billing cycle structures. There are two ways of setting up the billing process, but several options for generating bills. The two ways to set up the billing in E-Mon Energy are the Automatic Bill Cycle and the Manual Bill Cycle. With the Automatic Bill Cycle, a pre-set day/month and time are established for selective Groups and Locations, and run automatically. With the Manual bill cycle, you can generate a bill(s) by predefining a set of customers and meters that may require an individual billing statement. Generating these bills requires attention to the profile data. The profile data must be present for the period that you are generating the bill. If the profile data is not present for this period, consumption will show zero usage and demand. In preparation you must create the Time-Of-Use (TOU) and Rate structure in the Database window. Also, it is required that you assign these setups to the Group, Location, Meter, or Virtual Meter.

What Is the Reporting Function?

The Reporting function provides several different types of report, Recorder Report, Meter Report, AMR Calls Report, IDR Gap Report, and Consumption Report. Accessing each of these reports and generating the results vary within the E-Mon Energy software.

The following is a brief description of the reports that you can generate.

Recorder or Meter Report – These reports are generated via the Access window on the status of the recorder and meters. The user can generate the Recorder or Meter reports by selecting File from the main menu, and then clicking on save or print Meter/Recorder report.

AMR Calls Report or IDR Gap Report – These reports are generated through the Database window on the Report Tab. Clicking on the Group in the Device Explorer generates the AMR Calls Report. The report spreadsheet will populate with the Profile Start and End Date/Time, Last Call, Last Initialize, and Total Initialize. The IDR Gap Report is accessed the same way but populates the spreadsheet with the gaps of electricity consumption interval data. Results show the Oldest to the Newest Gap, Total and Last Convert. Both reports can be saved or printed by selecting File from the main menu and then clicking on Save or Print Selection.

Consumption Report – This report can be accessed from the Bill/Generate Bill drop-down menu that opens the Get Consumption dialog. From the dialog, the user can select the meter(s) and the billing period to generate the report. Although this spreadsheet cannot be printed or saved, it can be edited by selecting Estimate Reading Entry. You can generate a bill by clicking on the Generate Bill button. This report is mainly used for future reference, analysis, hardware failure, or hardware and software history.

Note: All reports can be opened in Formula One, in VTS spreadsheet format, and in MS Excel.
Where Do I Begin Creating a Bill Statement?

The bill process begins with a combination of several functions, rates, TOU schedule, billing template and billing cycle. These processes are all done from the Rates, Time-Of-Use (TOU) schedule, and Bill Cycle tabs on the Database window. As you know, setting up the customer or tenant billing statements requires a utility rate structure, time-of-use for the billing schedule, and template. For information on how to establish a rate structure and TOU schedule, see the TOU and Rate Section within this manual.

The bill templates (forms) are spreadsheets used in the E-Mon Energy™ software to generate bills and summary sheets. These templates are designed in Formula One 4.0 Workbook and can be edited to create an estimated bill to fit your billing profile. E-Mon provides several standard templates that can be used as is or can be customized to fit your customer’s needs.

Note: Each billing template can have any filename, but it must have a VTS extension.

The illustrations that follow are template examples of the Customer Summary and Meter Billing Statement.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>name 1</td>
<td></td>
<td>Customer</td>
<td></td>
<td>00001</td>
</tr>
<tr>
<td>5</td>
<td>name 2</td>
<td></td>
<td>Bill Date</td>
<td></td>
<td>31/2003</td>
</tr>
<tr>
<td>6</td>
<td>add 1</td>
<td></td>
<td>Bill From</td>
<td></td>
<td>1/1/2003</td>
</tr>
<tr>
<td>7</td>
<td>add 2</td>
<td></td>
<td>To</td>
<td></td>
<td>1/1/2003</td>
</tr>
<tr>
<td>8</td>
<td>city</td>
<td></td>
<td>Amount Due</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>9</td>
<td>state zip</td>
<td></td>
<td>Due Date</td>
<td></td>
<td>3/16/2003</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Meters Bill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>47</td>
<td>Other Charges</td>
<td></td>
<td></td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>48</td>
<td>Customer Extra Charge 1</td>
<td></td>
<td></td>
<td></td>
<td>$100.00</td>
</tr>
<tr>
<td>49</td>
<td>Customer Extra Charge 2</td>
<td></td>
<td></td>
<td></td>
<td>$200.00</td>
</tr>
<tr>
<td>50</td>
<td>Bill Extra Charge 1</td>
<td></td>
<td></td>
<td></td>
<td>$100.00</td>
</tr>
<tr>
<td>51</td>
<td>Bill Extra Charge 2</td>
<td></td>
<td></td>
<td></td>
<td>$200.00</td>
</tr>
<tr>
<td>52</td>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$300.00</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 18.1 - Customer Summary Template
Figure 18.2 - Meter Billing Statement Template 1

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Meter Billing Statement</td>
<td>Meter: 1-1-1A1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Emun LP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>One Oxford Valley</td>
<td>Customer No: 00001</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Suite 416</td>
<td>Billing Date: 11/17/2003</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Langhorne PA 19047</td>
<td>Due Date: 11/22/2003</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Amount: $5,461.65</td>
<td></td>
</tr>
</tbody>
</table>

Energy Use

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Seasonal Rate</th>
<th>Seasonal Rate</th>
<th>Seasonal Rate</th>
<th>Seasonal Rate</th>
<th>Meter Display</th>
<th>Actual</th>
<th>kWh</th>
<th>Rate</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>07/01/03</td>
<td>06/01/03</td>
<td>100</td>
<td>110</td>
<td>0.000000</td>
</tr>
<tr>
<td>Period 2</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>200</td>
<td>210</td>
<td>180</td>
<td>200</td>
<td>0.000000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demand Charge

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Seasonal Rate</th>
<th>Seasonal Rate</th>
<th>Seasonal Rate</th>
<th>Seasonal Rate</th>
<th>Peak Time</th>
<th>Actual</th>
<th>kWh</th>
<th>Rate</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>07/01/03</td>
<td>06/01/03</td>
<td>250</td>
<td>260</td>
<td>0.000000</td>
</tr>
<tr>
<td>Period 2</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>07/01/03</td>
<td>06/01/03</td>
<td>250</td>
<td>260</td>
<td>0.000000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Type</th>
<th>Basis</th>
<th>Rate</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax Rate Adjustment 1</td>
<td>20 kWh</td>
<td>0.01000</td>
<td>2.00</td>
</tr>
<tr>
<td>Extra Rate 1</td>
<td>20 Unit</td>
<td>0.01000</td>
<td>2.00</td>
</tr>
<tr>
<td>Meter Specific 1</td>
<td>100 M Unit</td>
<td>0.01000</td>
<td>10.00</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$10.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | $5,145.22 |

| Total | $5,145.22 |

Figure 18.3 - Meter Billing Statement Template 2
How Do Bill Templates (or Forms) Work?

The billing template consists of four areas – the Meter Bill, Customer Summary, Summary Sheet, and Data Table which are shown in the table below. When bills are generated, E-Mon Energy™ creates one row of the Data Table for each meter.

Note: The User cannot directly view the Data Table.

<table>
<thead>
<tr>
<th>METER BILL</th>
<th>CUSTOMER SUMMARY</th>
<th>SUMMARY SHEET</th>
<th>DATA TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td><a billing statement></td>
<td><summary title></td>
<td><summary title></td>
<td><Rowcurr, etc></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><name (in text form)></td>
</tr>
<tr>
<td><sample data></td>
<td><sample data></td>
<td><sample data></td>
<td><sample data + names></td>
</tr>
<tr>
<td></td>
<td><meter 1 summary></td>
<td><Customer 1 summary></td>
<td><meter 1 values></td>
</tr>
<tr>
<td></td>
<td><meter 2 summary></td>
<td><Customer 2 summary></td>
<td><meter 2 values></td>
</tr>
<tr>
<td></td>
<td><meter 3 summary></td>
<td><Customer 3 summary></td>
<td><meter 3 values></td>
</tr>
</tbody>
</table>

The Data Tables use this data to create the other three tables the Meter Bill, Customer Summary, and Summary Sheet.
Figure 18.5 - Billing Template Example

All billing templates contain “Defined Names” to name cells so that both the billing form itself and the E-Mon Energy™ application can access those cells regardless of site-specific customization. Although some are used by E-Mon Energy to read data from the form, most are used by E-Mon Energy to write data to the template (form) when bills are generated (such as Name1 and Meter). The illustration below displays the “Define Name”.
The defined name, “RowCurr,” is an index into the Data Table and defines the ‘Current Meter’ (the one currently displayed in the bill.) This is triggered by E-Mon Energy™ when the user selects First Bill, Next Bill, Previous Bill or Last Bill through the E-Mon Energy software. The defined name ‘Row Last’ defines the last index in the Data Table. This is set when E-Mon Energy generates a bill.

Row “0” of the data table (which is usually hidden) is not used to define a bill. It contains sample data, the defined names for the Data Table, and the formats for the Summary Sheet and Edit Table. In Table 1, Name, is shown under Data Table <sample data>.

To make customizing the Templates easier, the standard bill templates distributed by E-Mon have:

- Defined Name (in the Text Form) that are actually the names in the Data Table
- Sample Data in row “0” is ignored during billing

To begin customizing a Bill template (form), see Procedure on How to Customize a Bill Template (form) within this section.
Where Do I Set Up An Automatic/Manual Billing Cycle?

Setting up the Automatic or Manual Billing Cycle is done from the Bill Cycle tab on the Database Access window. The Bill Cycle window allows you to customize a bill cycle based on how often you want to run a billing schedule and tasks. The Automatic Billing Schedule allows you to create a bill cycle on a weekly bases or monthly bases. The following illustration and table describes the billing tab fields.

![Bill Cycle Tab Illustration](image)

Figure 18.7 - Bill Cycle Tab

<table>
<thead>
<tr>
<th>Panel Group/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Cycle Name*</td>
<td>Type in a unique name for your Bill Cycle. This is a require field.</td>
</tr>
<tr>
<td>Description</td>
<td>Type in a brief Description for your Bill Cycle.</td>
</tr>
<tr>
<td>Bill Schedule and Task</td>
<td></td>
</tr>
<tr>
<td>Bill Frequency</td>
<td>From this drop-down you can choose three options, Manual, Monthly, and Weekly, depending how often you want to run you billing schedule.</td>
</tr>
<tr>
<td>Show meters using this schedule (G-L-M)</td>
<td>Click this check box to display the meter(s) using this Bill Cycle.</td>
</tr>
</tbody>
</table>

* = Required field.

Where Do I Begin to Generate a Report?

In order to generate, save or print a report, you must be in direct communication with the hardware, either remotely, through a modem or a direct connection. On the Device Explorer, you must select a group and location to read the hardware, then select “Get Location” and “Connect.” Once communication is established, there are several reports that you can generate. The first two are the Recorder and Meter reports that are accessible once the Access window to the Function groups is available and scanning, verifying, or the profile status of the hardware is selected. To get into the save or print report feature, click on the File drop-down menu and select Save Recorder Report or Save
Meter Report (also Print Meter/Recorder Report). The save feature allows you to save the file as a Formula One VTS spreadsheet and open it in MS Excel. The following is a brief description of the two reports.

- **Recorder Report** – Saves the results on the status of the recorder and meters and, provides version/date, time, flags, and profile status.
- **Meter Report** – Saves the results on the status of the meters, readings, and flags.

The other two reports reside on the Database Access window under the Report Tab. These two reports are the *Automatic Meter Reading (AMR) Calls Report* and the *Interval Data Recorder (IDR) Gap Report*. These reports are saved and printed the same way as the Reports and Meters reports, except that the spread is displayed on the panel window after processing. The following is a brief description of the two reports.

- **AMR Calls Report** – Saves the results on selected groups, locations, and the recorders for Profile Start and End Date/Time, Last Call, Last Initialize, and Total Initialize.
- **IDR Gap Report** – Saves the results on selected locations and recorders, which record the gaps of electricity consumption interval data. Results show the Oldest to the Newest Gap, Total, and Last Convert. Depending on the size of the system and the type of report, the program may take several minutes to complete the report.

Here are examples of all four reports:

Figure 18.8 - Recorder Report

Note: In the Recorder Report illustration above Meter 1 is “bad” this is a Flag.

Figure 18.8 - AMR Calls Report

Figure 18.8 - IDR Gap Report
Figure 18.9 - Meter Report

Figure 18.10 - AMR Calls Report

Figure 18.11 - IDR GAP Report
How Do I Set Up the Automatic Bill Cycle?

Setting up the Automatic Bill Cycle

To setup the Automatic Bill Cycle:

1. Select **Database\Bill Cycle** from the drop-down menu or click on the **Bill Cycle** tab in the **Database Access** window.

2. Click on the Panel Action “+” button, to create a new **Bill Cycle**.

3. Type in a **Bill Cycle Name**. *Note: This field is required and must be unique.*

4. Tab across and enter a **Description** for the Bill Cycle.

Bill Cycle Definition

5. From the **Bill Schedule and Task** group, select the **Bill Frequency** from the drop-down list (Manual, Monthly or Weekly).
6. Click on the ▲ up ▼ down arrows to adjust the (Day of the Month to Create the bill on.)
7. Click on the ▲ up ▼ down arrows to adjust the Start Time to begin generating the bill.
8. Click on the Task for the Bill Cycle (Generate Bills, Create PDF Files and, Print Bills.)
9. Click on the “ ✓ ” button to accept/save the Bill Cycle record.
Auto Bill Cycle Setup

10 Utilize the Bill Cycle for a Group or Location by selecting the Group or Location tab under the Auto Billing Cycle group box, then select the name of the bill cycle from the drop-down list.

Note: This enables E-Mon Energy™ to automatically generate billing statements.

![Figure 18.14 - Auto Bill Cycle Setting](image)

11 Click on the “√” button to accept/save the record.

Meters using the Bill Cycle

12 Click on the Bill Cycle tab, then check on Show meters using this schedule. A processing message displays while querying the database for the group/location of the meters and refreshes the list box.

![Figure 18.15 - Query Database for Meters](image)

Auto Bill Cycle Scheduler

13 From the E-Mon Energy menu, select View/Bill Cycle Scheduled Task.

14 Ensure that the checkbox is checked for the Enable Auto Bill Cycle and click on the Refresh List button. The list will refresh with the new Bill Cycle added. Note: By default the Auto Bill Cycle window is always running in a minimized mode. If you wish to temporarily disable the Auto Bill generation, uncheck the Enable Auto Bill Cycle.

![Figure 18.16 - Auto Bill Cycle List](image)
How Do I Set Up a Billing Schedule /Template?

Setting Up a Billing Schedule/Template

To set up the Billing Schedule/Template:

1. Select Database\Meter from the drop-down menu or click on the Meter tab in the Database Access window.

2. From the Device Explorer, drill-down and click on a meter.

3. In the Bill Schedules/Templates group box, click on Enable for Billing.

4. From the TOU Schedule drop-down list, select a schedule.

5. From the Rate Schedule drop-down list, select a rate schedule.

6. In the Auto Billing Cycle group box, select a Bill Cycle from the drop-down list.

7. Click on the “√” button to accept/save the Bill Cycle record.
Generating Meter Readings/Bills

To generate a Meter Reading/Bills:

1. From the E-Mon Energy™ menu, select Bills\Generate Bills. The Get Consumption for Billing dialog opens.

![Figure 18.19 - Generate Bills](image)

2. From the Select the Meters group box, click on By Manual Bill Cycle Name and select a Bill Cycle Name from the drop-down list.

3. From the Bill Period group box, click on Get New Consumption.

4. Click on the drop-down arrow next to the Bill Start Date field and select the month, day, and year.

5. Click on the drop-down arrow next to the Bill End Date field and select the month, day, and year.

6. Click OK. The Meter Consumption for Billing spreadsheet will open.

There are options for generating bills:

- By Group, Location, and Meter – select a particular group, location, or meter.
- By Customer – select a customer, which can have multiple bills to generate.
- By Manual Bill Cycle Name – select a predefined set of customers/meters to generate.

In this manual, we will use By Manual Bill Cycle Name.
Consumption Report(s)

Figure 18.21 - Meter Consumption for Billing (spreadsheet View 1)

<table>
<thead>
<tr>
<th>#</th>
<th>Loc</th>
<th>Meter</th>
<th>Customer ID</th>
<th>This Bill Read Start</th>
<th>This Bill Read End</th>
<th>Prev. Meter Reading</th>
<th>Used By</th>
<th>Unit</th>
<th>Type</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>F1</td>
<td>000000001</td>
<td>2/1/2004</td>
<td>2/16/2004</td>
<td>No</td>
<td>kW</td>
<td>kW</td>
<td></td>
<td>647</td>
</tr>
</tbody>
</table>

Figure 18.22 - Meter Consumption for Billing (spreadsheet View 2)

<table>
<thead>
<tr>
<th>TOU Type 1</th>
<th>TOU Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pres. Read</td>
<td>647</td>
</tr>
<tr>
<td>Cur. Read</td>
<td>1550</td>
</tr>
<tr>
<td>Demand</td>
<td>17.66</td>
</tr>
<tr>
<td>2/8/2004 12:15</td>
<td>368</td>
</tr>
<tr>
<td>785</td>
<td>16.81</td>
</tr>
<tr>
<td>2/8/2004 11</td>
<td></td>
</tr>
</tbody>
</table>

Click on the **Generate Bill** button. A **Summary Sheet** will open listing the Customer IDs, Name, Total Meters, Total Usage, Total Demand, and Bill Total.
Click on the View Customers button. The Customer Summary will open listing the Meter Name, Usage, Demand, and Bill Total. Note: A customer can have multiple billing statements (e.g. gas bill, electric bill, water bill, etc).

Click the View Meters button. The Meter Billing Statement will open showing billing calculations. The Panel Navigation Buttons will let you navigate to view different meters.
Saving or Printing the Bill

Note: This procedure is performed after generating the statements.

To save the Bill:

1. Select File|Save Bill from the drop-down menu.
Billing Period Options

When you generate bills, the dialog box will prompt for the Bill Start Date and the Bill End Date. It does not prompt for the Bill Start Time and the Bill End Time. There are 2 billing period options. The first option is to generate bills starting at Noon and ending at Noon. The second option is to generate bills starting at Midnight time and ending at Midnight. There are advantages/disadvantages to each of the options.

Figure 18.26 - Bills Environment Option
Troubleshooting

How Do I Resolve a Problem with the E-Mon Energy™ Software?

Within this section, you will find some basic steps that can be taken to isolate and correct problems encountered with the E-Mon Energy software. The problems within this section only represent the most common problems and errors that the user may encounter.

Note: This section does not cover every possible error or problem and you may need to contact our Technical Support Team for additional assistance. If you need assistance while working with the E-Mon Energy software, please call our Technical Support at 1-800-334-3666.

Note: For a list of E-Mon Energy error messages see Appendix B.

Does the Software Support Help Functions?

Yes. Help functions are available through the main menu drop-down under Help. These help files are in relation with the contents of this manual. The E-Mon Energy content help window is divided three categories, Contents, Index, and Search. The Contents tab provides main topics and ‘how to’ instructions for the E-Mon Energy software. The Index tab provides you with an alphabetic listing of words commonly used throughout the manual. The Search tab provides you with the functionality to search for a particular word or phrase.

The help content topic window has two window areas, the Table of Contents on the left side and the relevant active topic area on the right. When a topic is chosen from the Table of Contents, the active topic area displays the relevant topic. The help index works by selecting from the directory or entering the first few letters to get the alphabetic listing of those relevant words. The search works similarly to the index, you type in a keyword and click on the list topics button to view the topics relevant to the keyword.

Note: This section does not cover standard window functions. Please reference your Windows operating guide.
Using Help

To use the Help Topics:

1. From the E-Mon Energy™ menu, select Help and highlight Content. The E-Mon Energy Content Help tab will open. (Note: The F1 key will also open the Help Content Window.)

2. From the Content tab, click on a Topic in the Table of Contents. The active topic window displays the topic.

To use the Help Index:

1. From the E-Mon Energy menu, select Help and highlight Content. The E-Mon Energy Content Help tab will open.

2. From the Content tab, click on the Index Tab.

3. Type in the first few letters (i.e. datab = database). The Help Index searches the directory and list all relevant topics.

4. Click on the appropriate Topic to view in the active window.
To use the Help Search:

1. From the E-Mon Energy™ menu, select **Help** and highlight **Content**. The E-Mon Energy Content Help tab will open.
2. From the Content tab, click on the Search Tab.
3. Type in a keyword (i.e. virtual meters). The Help Search finds and lists all relevant topics in the directory.

Click on the appropriate topic to view in the active window.
Appendix A

Glossary

A

AGGREGATION
Combining loads of multiple end-users or customers for facilitating the sale and purchase of an energy source and/or transmission services. (Multi-Point Metering) (See Virtual Meter)

AMPS
Amperage or Current – Volume of electricity flowing through a conductor.

AMR
See Automatic Meter Reading.

AMR CALLS REPORT
E-Mon Energy™ Report that saves the results on a selected group, location, and recorder for Profile Start and End Date/Time, Last Call, Last Initialize, and Total Initialization.

AMR SCHEDULE
AMR scheduling is a call-in and/or call-out by means of frequency and time of day. A device can be programmed to call-in every night, or E-Mon Energy can be programmed to call-out to the device every 2 days, etc. This feature provides un-attended data collection to take place automatically.

ACCESS RIGHTS
Granted permission to perform certain functions configured by the Administrator for the E-Mon Energy software.

AUTOMATIC METER READING (AMR)
A system capable of reading and managing meter data automatically.

AVG KW
The average kilowatt for an individual meter.

AUTOMATIC BILL CYCLE
A scheduled bill generation by means of frequency and time of day. E-Mon Energy can be programmed to generate billing statements (reports). This feature provides un-attended bill generation to take place automatically.

B

BAUD RATE
The rate of data transfer over the serial communication line (9600 baud is typically for E-Mon devices).

BILLING DEMAND
The demand that is being used for billing. Billing demand can be based on the previous 12 month demands in some billing rate structure.
BILLING SYSTEM

E-Mon Energy™ software module is designed for generating bills, flat rate billing, rate changes, tiered rates, pre-defined tax rates and miscellaneous billing charges.

BILLING TEMPLATES

E-Mon Energy comes with more than 80 billing templates for use. These templates can be customized to fit your requirements. The template consists of the bill, summary sheet, edit table, and data table; should you need to customize, edit only the template area.

C

CHANNEL

Metering input to data recorder.

CE-MON KEY

A hardware device that converts signal between the RS-485 and RS-232.

CE-MON KEY RM

A hardware device that converts signal between the RS-485 and RS-232. It also includes a built-in modem for remote data collection.

CHOPPER VIEW

Displays a color-coded bar graph showing 24-hours horizontally and days (specified) vertically.

COINCIDENTAL DEMAND

The sum of two or more demands that occur at the same time interval.

COINCIDENTIAL PEAK VIEW

Combines the KW demands for all meters selected.

COM PORT

The serial communication port on the computer. A COM Port can be used to connect to an E-Mon Energy Key or local modem to establish a connection to the data recorder/meter.

CSV

Comma Separated Value. This format is commonly used to export and import data from different applications. E-Mon Energy is capable of exporting interval data in CSV format.

CT

A Current Transformer is a sensor with current output. E-Mon metering hardware normally uses Current Sensor, which is a sensor with voltage output.

D

DATA ENGINE

The Built-in Database Management System that automatically stores and retrieves data.

DATA LINK

The way communication is made between two devices, e.g. a computer (E-Mon Energy) and the metering device.
Glossary

DAY LIGHT SAVINGS
Automatic time change (season) used to adjust the “Built-in Clock.” Some recorders can be programmed to automatically adjust its time by an hour in the falls and spring.

DEMAND CHARGE
A charge for demand usage.

DEMAND PROFILE
Energy usage in different times of day, also known as interval data. This data is commonly used to plot graphs or generate bills (usage and demand).

DEMAND STATISTICS
A Statistic table, which displays the Total KWh, Avg. KW, Peak, and Peak Time.

DEVICE EXPLORE
An E-Mon Energy™ main window component that displays the group and site location down to the devices (recorders and meters).

E

ENERGY USE
Energy consumption. E.g. electricity is usually measured in kWh (kilo watt-hour).

E-MON TECHNICAL SUPPORT
E-Mon Energy support group, 1-800-334-3666.

EXPORT DATA
An E-Mon Energy capability to export data as a Comma Separated File (CSV file extensions) into other applications.

ETHERNET
One of E-Mon Energy’s communication options is a Local Area Network connection with two or more devices on a communication backbone utilizing 10BaseT or 100BaseT line.

F

FLAGS
Flags indicate a power failure or error with the hardware. Error Flags are usually shown in Red.

FREQUENCY
Rate of variation of voltage and current, typically 60.0 Hertz (i.e. cycles per second).

FIRMWARE
A program (ROM, EPROM, or Flash) within the hardware device used to store software instructions for the metering device.

G

GRAPH
A visual and interactive image that displays a chart based on x by y data values. In E-Mon Energy, the x-axis values are usually represented in date/time.
GROUP
In the E-Mon Energy™ software, a group is a collection of locations. There can be up to 32,767 locations in a group.

GROUP – WINDOWS
A window area that displays several items.

GROUP NUMBER
A unique number assigned to identify the Group. The number must be between 1 and 32,767.

GROUP PANEL
Where you assign the Group Numbers and setup profile characteristics.

H

HARDWARE
Physical devices (IDR or Class 3000) or desktop computers.

I

ICON
A graphic symbol or image on a display screen with the purpose of an available function (See AMR or Other Features tab).

IDR GAP REPORT
E-Mon Energy Report that saves the results on selected locations and recorders, which record the gaps of interval data. Results show the Oldest to the Newest Gap, Total, and Last Convert. This feature is useful in identifying missing data.

IDR
The Interval Data Recorder (IDR) reads and records up to 4, 8, or 16 channels (inputs).

INITIALIZE
Sets all the parameters for recorder to factory defaults and clears the register in the recorder as well as the meter display.

J

K

KILOWATT HOURS (KWH)
One-thousand watt hours (1,000). This is usually the unit of measurement for electricity usage.

KILOVOLT (KV)
One-thousand volts (1,000). This is the unit of measurement for the potential.
% LOAD (PERCENT LOAD)
The percent of a meter’s rated load, which is represented by the load factor graph.

LINE VIEW
Uses a line graph to plot the load in KW.

LIST BOX
A window or dialog component, which lists available choices.

LOAD
The amount of electric power delivered or required at any specific point.

LOAD FACTOR
The percentage difference between the amount used during a specific time period, and the amount that would have been used if the usage stayed at the highest demand level during the entire time.

LOCATION
In the E-Mon Energy™ software a location is a collection of recorders/meters. There can be up to 208 recorders and 1,664 meters per physical location.

LOCATION PANEL
Where you assign the location numbers and set up profile characteristics.

M

MANUAL BILL CYCLE
Generates a bill(s) by predefining a set of customers and meters that may require an individual billing statement.

MAXIMUM PERIOD
(1-8) Refers to the Time of Use periods your day may be divided into in your utility rate structure.

MAXIMUM SCHEDULE
(1-8) Refers to the different seasons that may apply from your rate structure, (i.e. summer weekdays, winter weekends, etc.) each having different rates.

METER
A meter is a device that measures the customer’s level and volume of energy resources (i.e. electricity, gas, and water) used.

METER REG
Indicates that the Meter is delivering pulses to the recorder.

METER REPORT
E-Mon Energy Report that saves the results on the status of meters, readings, and flags.

MID PEAK
The energy or demand rate usually applied during weekday business hours.

MODEM
Internal or external serial device that supports the transmission and communication via telephone lines.
OTHER CHARGES
Charges are comprised of rate and tax adjustments.

OFF PEAK
The energy or demand rate applied during hours that are not covered by On Peak or Mid Peak. These rates are usually applied during evenings and weekends.

ON PEAK
The energy or demand rate applied during the time when utilities or distribution charges are the highest, which is usually during business hours from mid-morning to mid-afternoon.

PARAMETER
The characteristics of the device or software.

PEAK KW
The highest Kilowatt usage within a demand period (e.g. 15-, 30-, or 60-minute). Typically, a peak KW should be reset every month.

PEAK TIME
The time of peak demand KW.

PEAK DEMAND
The maximum load during a specific period of time or the highest electric requirement occurring in a given period (i.e. day, hour, mouth, year).

PIE CHART
A circular chart divided into color-coded slices the indicating meter’s percentage or value in kW demand registered at a chosen date and time.

PLOT STYLES
Line = Displays each demand KW per date and time.
Stacked Bar = Displays each demand period as a sum of all the meters currently graphed.
Stacked Area = Displays each demand period as a sum of all the meters currently graphed.
Bar = Displays each meter’s kW level per time segment side by side rather then stacked.

POP-UP
A window that displays in a response to a command or action.

POWER
In electricity, power is represented as kW or watts.

POWER MONITOR
The real-time graph for monitoring various power measurements (such as phase voltage, Amps, PH. Angles, PF%, KW, KVA and KVA).
POWER FAILURE

Occurs if the voltage drops past the required threshold (a flag).

POWER FLAG

Indicates that the state of the voltage powering the meters is low (voltage has fallen below a nominal level); noisy (dirty, power, harmonics); and unstable (fluctuating).

PROFILE (DATA)

Interval data over a period of time. Some E-Mon recorders can store interval data at 5- or 15-minute sampling rates. A profile is normally used for graphing and generating bills.

PROFILE STATUS

The profile status provides the “moving” window before we need to upload the current sampling rate data and how many days are left before the data will be lost from the recorder.

PROFILE INTERVAL

The interval sampling rate for the recorder (Values = 5 minute or 15 minutes).

PULSE

Input type setting (Values = 50/50 or Run-hour).

RATE ADJUSTMENT

Changes in rates or total charges with changes in specific items of cost and square footage (e.g. taxes and fuel prices).

RATE TABLE

An E-Mon Energy™ module for incorporating the monetary utility amounts or adjustments that will govern the billing costs to the customer.

RECORDER

A data collector which is capable of counting and storing pulses. Some recorders are capable of storing interval data. Some recorders have a built-in meter.

RECORDER REPORT

An E-Mon Energy Report that saves the results on status of recorders and meters, provides version/date, time, flags, and profile status.

RECORDER TIME

IDR or Class 3000 time. E-Mon Energy uses the PC time to send to the recorder.

REMOTE MONITORING

A remote terminal (PC or Laptop) emulating the host system using E-Mon Energy software via a dialup telephone line or Ethernet to communicate with the site devices.

ROLLING DEMAND

Rolling demand window period (values = 5 minute, 15 minute, and Reset at EOI).
RS-484/RS-232 CONNECTION
Used as a Direct COM port connection, a single point connection using an RS-232 from the computer into a multi-point communication network using an RS-485 converter. E-Mon RS-485 converters allows a connection to the recorder(s) and meter(s). RS-485 is a multi-drop communication link with a speed range of 2,400 bits per second to 19,200 bits per second.

SENSORS
Measurement device that detects the energy flow (magnetic field) through the metal core. The volume of energy flow is converted to voltage and relays to the metering chip for calculating energy and various factors.

SET OF SENSORS
Some E-Mon meters are capable of supporting multiple sets of sensors in parallel. This feature allows a single meter to monitor more than one circuit.

SCANNING
E-Mon Energy™ has the scan feature to automatically query the recorders/meters in the system. Once a new device is detected, you have the option of adding it to the database.

STATISTICS TABLE
The table that populates with the demand data used to plot the graphs (i.e. Total KWh, Avg. KW, Peak, Peak Time, WHrs).

STATUS
The current condition of the device.

STATUS BAR
Located at the bottom of the window display, it shows the present Function, Group and Location, Communication, and System status.

SCAN RECORDERS
The process of sending a signal request for an authorization responses from the recorder.

SCROLL BAR
A bar that is on the right-side or bottom of the window for extending content viewing. E-Mon Energy software provides two arrows for left or right scrolling (i.e. Load Graph).

SLIDING WINDOW
E-Mon Energy’s set time interval that is derived from a predefined number of sub-intervals, each at a specified time.

TAX (%)
Added to the E-Mon Energy rate table as recover fees by the utility company, state or municipal regulation. Based on a percentage of the net energy cost.

TCP
Transmission Control Protocol, a communication protocol for routing IP addresses.
TIME ZONE
Since E-Mon Energy™ is capable of reading recorders/meters world wide, you must specify the correct time zone for each location/recorder. The PC running E-Mon Energy must also have the correct time zone setup, since the PC time will be used to set to the recorder/meter time.

TOU
Time-of-Use (TOU), a usage structure that takes into account the quantity of energy used at a specified time period. E.g. Off-peak, On-Peak, Weekends, Weekdays, Summer, Winter, etc.

TOU SCHEDULE
An E-Mon Energy module for setting up the time-of-use for specific days and seasons.

UPDATE DATABASE
The process for adding a meter or recorder to the E-Mon Energy database.

USAGE CHARGE
The rates charged on per unit of energy (kWh) for a specific time period and season.

VERIFY HARDWARE
Access window function that checks the profile mode and sampling rate, demand interval, and demand window.

VERSION
The number assigned to the software or firmware to track the current release.

VOLTAGE
The potential of energy (electricity).

VIRTUAL METER
A virtual meter is a collection of adding/subtracting real meter consumption.

WATTS
A unit of measure for electricity power. Volts x Amps = Watts

WATT-HOUR
A unit of measure for electricity energy. Power being used in a 1 hour period. E.g. a 1-watt light bulb running for an hour yields a 1 watt hour usage.
Appendix B

Status Bar Function Codes and Error Flag Codes

Window Status Bar Definitions

Status Locations (Status Loc)

<table>
<thead>
<tr>
<th>No</th>
<th>Status Loc</th>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>READY</td>
<td>Successfully gets the data from the database for location access.</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Setting up Auto Answer...Database Error</td>
<td>Exception in getting the connection parameters from the database.</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Setting up Auto-Answer...</td>
<td>Select comport and Initialize modem.</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Auto Answer Setup failed</td>
<td>Cannot get comport object, or comport init function failed.</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>Database Error, cannot establish connection</td>
<td>Cannot open the database for location access.</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>Failed to get the comport</td>
<td>Failed to instantiate the direct comport object.</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>Failed to setup the comport</td>
<td>The init function of Direct comport object failed, possible cause: comport in use; allocate comport failed; or setting terminal failed.</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>Failed to setup the modem</td>
<td>The init function of Modem comport object failed, possible cause: comport in use; allocate comport failed; setting terminal failed; or sending modem init command failed.</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>Failed to setup the IP object</td>
<td>Failed to instantiate TCP/IP comport object.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Failed to prepare the IP connection</td>
<td>The init function of IP port object failed, possible cause: allocate port failed; or setting terminal failed.</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>Recorder not found in DB</td>
<td>Cannot find the recorder record in the database.</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>Recorder parameter not found in DB</td>
<td>Cannot find the recorder parameter record in the database.</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>Convert to integer exception</td>
<td>Cannot retrieve Meter ID when reading meters.</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>Meter not found in DB</td>
<td>Cannot find the meter record in the database.</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>Read-power-data canceled</td>
<td>Cancel button clicked, or clicking other function buttons will also cancel the current function button process.</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>Read-load-factor canceled</td>
<td>Cancel button clicked, or clicking other function buttons will also cancel the current function button process.</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>Canceled</td>
<td>Cancel button clicked, or clicking other function buttons will also cancel the current function button process.</td>
</tr>
</tbody>
</table>
Status Bar Function Codes and Error Flag Codes

<table>
<thead>
<tr>
<th>No</th>
<th>Status Loc</th>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0</td>
<td>Error: No connection</td>
<td>Lost connection before command was complete.</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>Error: Time out</td>
<td>Did not get the proper response from Hardware in the specified time.</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>Invalid cmd</td>
<td>An unknown command was sent to the Hardware or security level not allowing it.</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>Re-download</td>
<td>For high resolution meter, the profile data exceeds the max pulse limit. The day block will be re-downloaded one more time.</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>Err: data over limit</td>
<td>At least one of the interval data exceeds the rated pulse. Check the Meter configuration in the database, especially the Pulse Factor.</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>Err: missing day block</td>
<td>At least one day block of interval profile data is missing during download. The download date will be updated.</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>Err: data length</td>
<td>The profile data block has the wrong length. Software keeps downloading but it won’t update the download date.</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>Error: recr param</td>
<td>During download, cannot get the recorder parameter from database, download failed.</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>Error: database update</td>
<td>When sending Recorder or Meter information, failed to update the database with the information sent. Or when download failed to update the profile to the database.</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>New Location! Click [Add Location] button to setup</td>
<td>When a remote recorder calls-in, E-Mon Energy™ will query the group/location from the device, if E-Mon Energy can not find it in the database, it will prompt you to add a location.</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>STANDBY</td>
<td>E-Mon Energy is waiting to receive in-coming calls (AMR). Or Access location is ready to make the connection.</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>Err or</td>
<td>Refer to status bar panel 0 for the cause.</td>
</tr>
</tbody>
</table>

Modem Functions

<table>
<thead>
<tr>
<th>No</th>
<th>Status Loc</th>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Modem Init Error</td>
<td>Transmission Modem will not dial out.</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Auto Answer READY</td>
<td>E-Mon Energy is waiting to receive in-coming calls (AMR).</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Error in Auto Answer setup</td>
<td>Failed to set the modem to “not waiting” ring.</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Set Dial-Timeout Error</td>
<td>Modem return error when sending the modem dial timeout command.</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>Modem Init Timeout</td>
<td>Modem timeout when sending the init string to Modem.</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>Bad data</td>
<td>Data is Corrupted.</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>Unexpected Data</td>
<td>Data Received has wrong Check Sum.</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>Auto Answer completed at (time stamp)</td>
<td>Bye command sent to Hardware.</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>Auto Answer terminated at (time stamp)</td>
<td>Other disconnection than sending Bye command.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Auto Answer line dropped at (time stamp)</td>
<td>Line disconnected when neither hardware nor software initiates the disconnection.</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>Register comport status’</td>
<td>Auto-answer synchronizes the comport status with modem.</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Initialize Modem…</td>
<td>Sending initialization and configuration</td>
</tr>
</tbody>
</table>
Status Bar Function Codes and Error Flag Codes

<table>
<thead>
<tr>
<th>No</th>
<th>Status Loc</th>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>3</td>
<td>Modem Dialing…</td>
<td>Modem is dialing the destination phone number.</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>Hanging Up…</td>
<td>Wait while the modem is hanging up.</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>Not Connected</td>
<td>Refer to status bar panel 0 for the cause.</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>ONLINE</td>
<td>Connection is established, ready to transmit data.</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>Modem Busy</td>
<td>The dialed number is busy.</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>NoCarrier</td>
<td>Failed to establish connection, possible cause: the dialed number is answered by voice.</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>No Carrier</td>
<td>Can be generated if connection handshaking began but was aborted, if the modem timed out internally, or if a connection was established and subsequently lost.</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>No Dial Tone</td>
<td>No dial tone when a dial attempt began, may indicate a cabling problem.</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>Connect failed:</td>
<td>A connection attempt fails for any reason (i.e., busy signal, handshaking error).</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>Dial Canceled/Standby</td>
<td>Modem dial canceled and is ready to make connection.</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>STANDBY</td>
<td>Ready to make the connection.</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>Hangup/Standby</td>
<td>Modem hung up and is ready to make connection.</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>Modem Cmd Error</td>
<td>Modem return error occurred when sending command to it (Modem Configuration or Hardware Error).</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>Modem Init Error</td>
<td>Modem return error occurred when sending init string to it.</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>Dial Error</td>
<td>Error in dialing the number, possible cause: invalid phone number.</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>DialCancel Error</td>
<td>Failed to cancel the Modem dialing.</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>Hangup Error</td>
<td>Modem return error when hang-up occurs.</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>DialCmd Timeout</td>
<td>Modem timeout when dialing.</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>DialCancelCmd Timeout</td>
<td>Modem timeout when canceling the dial.</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>HangupCmd Timeout</td>
<td>Modem timeout when hang-up occurs.</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>Modem is Connected</td>
<td>Online Output data can now be transmitted.</td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>Offline</td>
<td>No transmission.</td>
</tr>
</tbody>
</table>

TCP Functions

<table>
<thead>
<tr>
<th>No</th>
<th>Status Loc</th>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Bad data</td>
<td>Data is Corrupted.</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Unexpected data</td>
<td>Data Received has wrong Check Sum.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Connecting…</td>
<td>Wait, making connection.</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Disconnecting</td>
<td>Wait, disconnecting.</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>ONLINE</td>
<td>Connection is established, ready to transmit data.</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>STANDBY</td>
<td>Ready to make the connection.</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>or…Code</td>
<td>(Example: Error…Code:10004) See TCP/IP Connection Error Codes within this section.</td>
</tr>
</tbody>
</table>
Direct Com port Functions

<table>
<thead>
<tr>
<th>No</th>
<th>Status Loc</th>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Bad Data</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Unexpected data</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Connecting...</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>OFFLINE</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>ONLINE</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>STANDBY</td>
</tr>
<tr>
<td>8</td>
<td>3 Offline</td>
<td>8</td>
<td>Offline</td>
</tr>
<tr>
<td>7</td>
<td>3 Disconnect</td>
<td>7</td>
<td>Disconnecting</td>
</tr>
</tbody>
</table>

E-Mon Energy Main Window Function

<table>
<thead>
<tr>
<th>No</th>
<th>Status Loc</th>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Delete tree….done</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Processing tree….done</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>(file path) E-Mon Energy™ program path.</td>
</tr>
<tr>
<td>4</td>
<td>2 LDB</td>
<td>4</td>
<td>LDB Local Database.</td>
</tr>
<tr>
<td>5</td>
<td>2 RDB</td>
<td>5</td>
<td>RDB Remote Database thru database server.</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>Error: creating file</td>
</tr>
</tbody>
</table>

TCP/IP Connection Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10004</td>
<td>Interrupted function call.</td>
</tr>
<tr>
<td>10009 B</td>
<td>Bad file number.</td>
</tr>
<tr>
<td>10013 Perm</td>
<td>Permissions denied.</td>
</tr>
<tr>
<td>10014 U</td>
<td>Unknown error.</td>
</tr>
<tr>
<td>10022 In</td>
<td>Valid argument.</td>
</tr>
<tr>
<td>10024</td>
<td>Too many open files.</td>
</tr>
<tr>
<td>10035</td>
<td>Warning: The socket would block on this call.</td>
</tr>
<tr>
<td>10036</td>
<td>A blocking call is in progress.</td>
</tr>
<tr>
<td>10037</td>
<td>WSAEALREADY: Watch out, Al is ready.</td>
</tr>
<tr>
<td>10038</td>
<td>Socket descriptor is (1) not a socket, or (2) is of wrong type.</td>
</tr>
<tr>
<td>10039</td>
<td>The destination address is required for this operation.</td>
</tr>
<tr>
<td>10040</td>
<td>The datagram was too large to fit into the buffer and was truncated.</td>
</tr>
<tr>
<td>10041 WS</td>
<td>*APROTOTYPE:</td>
</tr>
<tr>
<td>10042</td>
<td>The option is unknown or not supported.</td>
</tr>
<tr>
<td>10043</td>
<td>Either (1) no buffer space is available so the socket cannot be created or (2) protocol is not supported.</td>
</tr>
<tr>
<td>10044</td>
<td>Specified socket type not supported in this address family.</td>
</tr>
<tr>
<td>10045</td>
<td>Operation is not supported by this socket.</td>
</tr>
<tr>
<td>10046</td>
<td>Specified protocol family is not supported.</td>
</tr>
<tr>
<td>10047</td>
<td>Specified address family is not supported by this protocol.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>10048</td>
<td>The address is already in use for this operation.</td>
</tr>
<tr>
<td>10049</td>
<td>The address is not available from this machine.</td>
</tr>
<tr>
<td>10050</td>
<td>The network subsystem has failed.</td>
</tr>
<tr>
<td>10051</td>
<td>The network is unreachable from this machine at this time.</td>
</tr>
<tr>
<td>10052</td>
<td>The network has been reset.</td>
</tr>
<tr>
<td>10053</td>
<td>The virtual circuit has been aborted due to timeout, etc.</td>
</tr>
<tr>
<td>10054</td>
<td>The virtual circuit has been reset by the partner.</td>
</tr>
<tr>
<td>10055</td>
<td>The descriptor is not a socket, or no buffer space is available.</td>
</tr>
<tr>
<td>10056</td>
<td>The socket is already connected.</td>
</tr>
<tr>
<td>10057</td>
<td>The socket is not connected.</td>
</tr>
<tr>
<td>10058</td>
<td>The socket has been shutdown.</td>
</tr>
<tr>
<td>10059</td>
<td>AETOOMANYREFS</td>
</tr>
<tr>
<td>10060</td>
<td>The operation timed out.</td>
</tr>
<tr>
<td>10061</td>
<td>The attempt to connect was forcibly refused.</td>
</tr>
<tr>
<td>10062</td>
<td>WSAELOOP: See WSAELOOP.</td>
</tr>
<tr>
<td>10063</td>
<td>The name is too long.</td>
</tr>
<tr>
<td>10064</td>
<td>The host machine is down.</td>
</tr>
<tr>
<td>10065</td>
<td>The host machine is unreachable.</td>
</tr>
<tr>
<td>10066</td>
<td>AENOTEMPTY:</td>
</tr>
<tr>
<td>10067</td>
<td>AEPROCLIM:</td>
</tr>
<tr>
<td>10068</td>
<td>AEUSERS:</td>
</tr>
<tr>
<td>10069</td>
<td>SAEDQUOT:</td>
</tr>
<tr>
<td>10070</td>
<td>AESTALE:</td>
</tr>
<tr>
<td>10071</td>
<td>AEREMOTE:</td>
</tr>
<tr>
<td>10091</td>
<td>Network subsystem is unusable.</td>
</tr>
<tr>
<td>10092</td>
<td>Version requested by WSAStrartUp is not supported by loaded Winsock DLL.</td>
</tr>
<tr>
<td>10093</td>
<td>WSAStrartUp not yet called.</td>
</tr>
<tr>
<td>10101</td>
<td>AEDISCON:</td>
</tr>
<tr>
<td>11001</td>
<td>Host not found.</td>
</tr>
<tr>
<td>11002</td>
<td>Host not found, or SERVERFAIL, can try again.</td>
</tr>
<tr>
<td>11003</td>
<td>Non-recoverable errors, FORMERR, REFUSED, or NOTIMP.</td>
</tr>
<tr>
<td>11004</td>
<td>Valid name, but no data record of requested type.</td>
</tr>
</tbody>
</table>
Connect and Read Meters

1. From the E-Mon Energy™ Explorer window, click and select Hardware\Set Location from the drop-down menu.
2. From the Group drop-down list, select a Group.
3. From the Location drop-down list, select the Location you want to connect.
4. Click on the Set button. The Access window opens.
5. Click on the Connect button to establish connection.
6. From the Function group box, click on Setup Hardware.
7. Click on Scan Recorder to verify recorder/meter status. Verify that all devices are ok.
8. From the Function group box, click on Read Hardware.
9. Click on Read Meters to take meter readings.
10. Click on Flag Status to check the status of the recorder.
11. Click on Profile Status to check the profile (interval data) storage status.
12. Click on Version\Time to check the recorder time; click on Set HW Time if need be.
13. Click on Download to transfer profile (interval data) from recorder to the PC. This step may take a while to complete, depending on the number of recorders and/or days.
14. You may proceed to Verify Hardware and Verify Recorder, Meters, AMR, and TOU.
15. Click on Disconnect to terminate the connection; then close the window.

Generate Bills

1. From the E-Mon Energy Explorer window, click and select Bills\Generate Bills from the drop-down menu. A dialog box displays various options for generating bills, (e.g. By Group-location-Meter, By Customer, and By Manual Bill Cycle Name).
2. Select the Billing option.
3. Select the Billing Period.
4. Select Coincidental Peak, if applicable.
5. Click on OK. E-Mon Energy will generate consumptions. Once finished, the Meter Consumption for Billing window will open showing Group, Location, Meter, Customer ID, Billing Periods, Meter Readings, etc.
6. Click on Generate Bill. The Meter Consumption for Billing window minimizes; E-Mon Energy will generate bills. Once finished, the Bill window will open showing the Customer ID, Customer Name, Total Meters, Total Usage, Total Demand, and Bill Total.
7. Click on View Customers to view the Customer Summary sheet. Use the navigation buttons to view different customers.
8. Click on View Meters to view the Meter Billing Statement in detail. Use the navigation buttons to view different meters.
9. Click on View Summary or View Customers to perform other functions as need be.
10. Select File\Print Bill to get a hard copy of the bill or File\Save Bill to save the bill.
11. Select File\Close Bill to close.
Graph Load Profile

1. From the E-Mon Energy™ Explorer window, click and select Graph\Load Profile from the drop-down menu. A Load Profile graph window displays a blank graph with various options.
2. In the shaded device directory, select Group, click and drill-down to the Recorder level, and then to the Meter level, if you wish to graph a single meter.
3. Right-click on the device (Recorder or Meter) and highlight, then left-click on Graph this device.
4. In the Time Period, select the From date/time and To date/time.
5. Click on the Get Graph button. The statistic table refreshes with new data and the graph will display the load.
6. Use the mouse to navigate through various options (zoom in, zoom out, scroll left and right, etc.).
7. Select File\Print to get a hard copy of the graph.
8. Select File\Close to close the graph window.
Formbill Filename Convention and Definitions

STANDARD FORMS

- **S1P-A.VTS** - 1 Period variation A (24-hour monitoring, single period)
- **S1P-B.VTS** - 1 Period variation B (24-hour monitoring, single period)

 - Note: Variation A doesn’t have customization options, whereas variation B does.
- **S2P-A.VTS** - 2 Periods variation A (On-Peak/Off-Peak, 2 periods)
- **S2P-B.VTS** - 2 Periods variation B (On-Peak/Off-Peak, 2 periods)
- **S3P-A.VTS** - 3 Periods variation A (On-Peak/Intermediate/Off-Peak, 3 periods)
- **S3P-B.VTS** - 3 Periods variation B (On-Peak/Intermediate/Off-Peak, 3 periods)
- **S8P-A.VTS** - Standard 8 Periods variation A (On-Peak/Intermediate/Off-Peak, etc, 8 periods)
- **S8P-B.VTS** - Standard 8 Periods variation B (On-Peak/Intermediate/Off-Peak, etc, 8 periods)

 - Note: Some TOU schedule requires multiple periods with multiple seasons.

TIER FORMS: 1 PERIOD

- **T1H2D.vts** - 1 Period, 2 Level Tier kWh, Single kW Demand
- **T1H3D.vts** - 1 Period, 3 Level Tier kWh, Single kW Demand
- **T1H4D.vts** - 1 Period, 4 Level Tier kWh, Single kW Demand
- **T1H5D.vts** - 1 Period, 5 Level Tier kWh, Single kW Demand

 - **T1H2D2.vts** - 1 Period, 2 Level Tier kWh, 2 Level Tier kW Demand
 - **T1H3D2.vts** - 1 Period, 3 Level Tier kWh, 2 Level Tier kW Demand
 - **T1H4D2.vts** - 1 Period, 4 Level Tier kWh, 2 Level Tier kW Demand
 - **T1H5D2.vts** - 1 Period, 5 Level Tier kWh, 2 Level Tier kW Demand

 - **T1H3D3.vts** - 1 Period, 3 Level Tier kWh, 3 Level Tier kW Demand
 - **T1H4D3.vts** - 1 Period, 4 Level Tier kWh, 3 Level Tier kW Demand
 - **T1H5D3.vts** - 1 Period, 5 Level Tier kWh, 3 Level Tier kW Demand

 - **T1H4D4.vts** - 1 Period, 4 Level Tier kWh, 4 Level Tier kW Demand
 - **T1H5D4.vts** - 1 Period, 5 Level Tier kWh, 4 Level Tier kW Demand
 - **T1H5D5.vts** - 1 Period, 5 Level Tier kWh, 5 Level Tier kW Demand

TIER FORMS: 2 PERIODS

- **T2H2D.vts** - 2 Period, 2 Level Tier kWh, 2 kW Demand
- **T2H3D.vts** - 2 Period, 3 Level Tier kWh, 2 kW Demand
- **T2H4D.vts** - 2 Period, 4 Level Tier kWh, 2 kW Demand
- **T2H5D.vts** - 2 Period, 5 Level Tier kWh, 2 kW Demand

 - **T2H2D2.vts** - 2 Period, 2 Level Tier kWh, 2 Level Tier kW Billing Demand
 - **T2H3D2.vts** - 2 Period, 3 Level Tier kWh, 2 Level Tier kW Billing Demand
 - **T2H4D2.vts** - 2 Period, 4 Level Tier kWh, 2 Level Tier kW Billing Demand
 - **T2H5D2.vts** - 2 Period, 5 Level Tier kWh, 2 Level Tier kW Billing Demand

 - **T2H3D3.vts** - 2 Period, 3 Level Tier kWh, 3 Level Tier kW Billing Demand
 - **T2H4D3.vts** - 2 Period, 4 Level Tier kWh, 3 Level Tier kW Billing Demand
Billing Templates

T2H5D3.vts - 2 Period, 5 Level Tier kWh, 3 Level Tier kW Billing Demand
T2H4D4.vts - 2 Period, 4 Level Tier kWh, 4 Level Tier kW Billing Demand
T2H5D4.vts - 2 Period, 5 Level Tier kWh, 4 Level Tier kW Billing Demand
T2H5D5.vts - 2 Period, 5 Level Tier kWh, 5 Level Tier kW Billing Demand

TIER FORMS: 1 PERIOD, KWH PER KW TIER

T1P2D.vts - 1 Period, 2 Level Tier kWh per kW Billing Demand, Single kW Demand
T1P3D.vts - 1 Period, 3 Level Tier kWh per kW Billing Demand, Single kW Demand
T1P4D.vts - 1 Period, 4 Level Tier kWh per kW Billing Demand, Single kW Demand
T1P5D.vts - 1 Period, 5 Level Tier kWh per kW Billing Demand, Single kW Demand
T1P2D2.vts - 1 Period, 2 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T1P3D2.vts - 1 Period, 3 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T1P4D2.vts - 1 Period, 4 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T1P5D2.vts - 1 Period, 5 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T1P3D3.vts - 1 Period, 3 Level Tier kWh per kW Billing Demand, 3 Level Tier kW Billing Demand
T1P4D3.vts - 1 Period, 4 Level Tier kWh per kW Billing Demand, 3 Level Tier kW Billing Demand
T1P5D3.vts - 1 Period, 5 Level Tier kWh per kW Billing Demand, 3 Level Tier kW Billing Demand
T1P4D4.vts - 1 Period, 4 Level Tier kWh per kW Billing Demand, 4 Level Tier kW Billing Demand
T1P5D4.vts - 1 Period, 5 Level Tier kWh per kW Billing Demand, 4 Level Tier kW Billing Demand
T1P5D5.vts - 1 Period, 5 Level Tier kWh per kW Billing Demand, 5 Level Tier kW Billing Demand

TIER FORMS: 2 PERIODS, KWH PER KW TIER

T2P2D.vts - 2 Period, 2 Level Tier kWh per kW Billing Demand, 2 kW Demand
T2P3D.vts - 2 Period, 3 Level Tier kWh per kW Billing Demand, 2 kW Demand
T2P4D.vts - 2 Period, 4 Level Tier kWh per kW Billing Demand, 2 kW Demand
T2P5D.vts - 2 Period, 5 Level Tier kWh per kW Billing Demand, 2 kW Demand
T2P2D2.vts - 2 Period, 2 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T2P3D2.vts - 2 Period, 3 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T2P4D2.vts - 2 Period, 4 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T2P5D2.vts - 2 Period, 5 Level Tier kWh per kW Billing Demand, 2 Level Tier kW Billing Demand
T2P3D3.vts - 2 Period, 3 Level Tier kWh per kW Billing Demand, 3 Level Tier kW Billing Demand
T2P4D3.vts - 2 Period, 4 Level Tier kWh per kW Billing Demand, 3 Level Tier kW Billing Demand
T2P5D3.vts - 2 Period, 5 Level Tier kWh per kW Billing Demand, 3 Level Tier kW Billing Demand
T2P4D4.vts - 2 Period, 4 Level Tier kWh per kW Billing Demand, 4 Level Tier kW Billing Demand
T2P5D4.vts - 2 Period, 5 Level Tier kWh per kW Billing Demand, 4 Level Tier kW Billing Demand
T2P5D5.vts - 2 Period, 5 Level Tier kWh per kW Billing Demand, 5 Level Tier kW Billing Demand
TIER FORMS: 1 PERIOD, KWH PER KW TIER WITH SUB-TIER KWH

- **T1P3H3D2.vts** - 1 Period, 3 Level Tier kWh per kW Billing Demand with 3 sub-tier kWh, 2 Level Tier kW Billing Demand
- **T1P3H3D3.vts** - 1 Period, 3 Level Tier kWh per kW Billing Demand with 3 sub-tier kWh, 3 Level Tier kW Billing Demand

TIER FORMS: 2 PERIODS, KWH PER KW TIER WITH SUB-TIER KWH

- **T2P3H3D2.vts** - 2 Period, 3 Level Tier kWh per kW Billing Demand with 3 sub-tier kWh, 2 Level Tier kW Billing Demand
- **T2P3H3D3.vts** - 2 Period, 3 Level Tier kWh per kW Billing Demand with 3 sub-tier kWh, 3 Level Tier kW Billing Demand

Note: When customizing the form, please save as a different filename, so the original can be preserved.

CROSS SEASON STANDARD FORMS:

- **S1P-2XA.VTS** - 1 Periods for each season, 2 seasons, variation A
- **S1P-2XB.VTS** - 1 Periods for each season, 2 seasons, variation B
 Note: Variation A doesn't have customizations, whereas variation B does.
- **S2P-2XA.VTS** - 2 Periods for each season, 2 seasons, variation A
- **S2P-2XB.VTS** - 2 Periods for each season, 2 seasons, variation B
- **S3P-2XA.VTS** - 3 Periods for each season, 2 seasons, variation A
- **S3P-2XB.VTS** - 3 Periods for each season, 2 seasons, variation B
- **S4P-2XA.VTS** - 4 Periods for each season, 2 seasons, variation A
- **S4P-2XB.VTS** - 4 Periods for each season, 2 seasons, variation B

Note: Within a billing period, there should only be a maximum of 2 seasons cross over.
E-MON LICENSE AGREEMENT

This is a contract between you, the end user, and E-Mon. If you open this sealed package, you agree to be bound by the terms of this contract. If you do not wish to be bound by the terms of this contract, do not open the sealed package. Immediately return the unopened package and the accompanying items (including written materials and binders or other containers) to the point of purchase for a full refund.

1. COPYRIGHT/PROPRIETARY PROTECTION – The software which accompanies this License Agreement (the “SOFTWARE”) and the copyright on the SOFTWARE are owned by E-Mon or its suppliers and the SOFTWARE is protected by United States and international copyright laws. You may not copy, modify or distribute the SOFTWARE or the written materials which accompany it, except as otherwise provided in this Agreement. You may either make one copy of the SOFTWARE solely for backup or archival purposes or transfer the SOFTWARE to a single hard disk, provided you keep the original solely for backup or archival purposes. Your right to use the SOFTWARE terminates automatically if you violate any part of this Agreement.

2. GRANT OF LICENSE – E-Mon grants you the right to use one copy of the enclosed SOFTWARE on a single terminal connected to a single computer. You may not network the SOFTWARE or otherwise use it on more than one computer or computer terminal at the same time.

3. OTHER RESTRICTIONS – You may not modify, reverse-engineer, disassemble, decompile, translate or merge the SOFTWARE with another software or make any attempt to discover the source code of the SOFTWARE. You may not sublicense, rent, or lease any portion of the SOFTWARE. You may, after written notification and approval from E-Mon, assign the SOFTWARE in its entirety to another person or entity, provided you do not keep any copies of the SOFTWARE and the recipient agrees to the terms of this Agreement. If you have received an update to the SOFTWARE, any assignment of the SOFTWARE must include all updates and all prior versions of the SOFTWARE.

4. DUAL MEDIA SOFTWARE – If the SOFTWARE is on both CD-ROM and floppy disk, you may use the SOFTWARE only on the disk which is appropriate for your computer. You may not use the other media on another computer, or loan, rent, lease or transfer them to anyone else except as part of the assignment of the SOFTWARE (as permitted above).

5. LIMITED WARRANTY – E-Mon warrants that the media on which the SOFTWARE is supplied will be free from defects in materials and workmanship and that the SOFTWARE will perform substantially in accordance with the documentation supplied with the SOFTWARE by E-Mon for 90 days from the time you receive the SOFTWARE. No information or advice given by E-Mon distributors, agents or employees will in any way affect the scope of this warranty. This warranty does not cover any part of the SOFTWARE which has been modified from its original manufactured condition, improperly installed, abused or misused, or in connection with equipment or materials not supplied or recommended by E-Mon.

6. THE WARRANTIES GIVEN HEREIN ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WHICH ARE HEREBY DISCLAIMED TO THE FULLEST EXTENT BY LAW. E-Mon’s sole liability for breach of the warranties in this agreement is the repair or replacement of the SOFTWARE. IN NO EVENT SHALL E-MON BE LIABLE FOR CONSEQUENTIAL LOSSES OR INCIDENTAL DAMAGES, such as property damages or economic losses caused by a product, even if it was made aware of the possibility of such losses or damages.

7. This Agreement shall be governed by the laws of the State of New Jersey.
8. U.S. GOVERNMENT RESTRICTED RIGHTS
9. The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (ii) of The Rights in Technical Data and Computer Software Clause at 52.227-7013. Contractor/manufacturer is E-Mon, LLC/850 Town Center Drive/Langhorne, PA 19047.