CONTENT

I. Attention .. 1
II. Brief Introduction .. 2
III. Specification .. 3
 1. Model ... 3
 2. Ranges and Accuracy of Measurement 3
 3. Specifications .. 4
IV. Structure of Meter .. 5
V. Liquid Crystal Display .. 6
 1. LCD Screen ... 6
 2. Description of Special Symbols .. 6
 3. Examples Illustrated .. 7
VI. Operating Method ... 8
 1. Boot up ... 8
 2. Shutdown ... 9
 3. Resistance Measurement .. 10
 4. Current Measurement .. 11
 5. Date Lock/Release/Storage .. 11
 6. Data Access ... 12
 7. Alarm Settings ... 12
 8. Access to Alarm Critical Value .. 13
 9. Clear Data ... 13
VII. Measurement Principle .. 13
 1. Principle of Resistance Measurement 13
 2. Principle of Current Measurement 14
VIII. Measurement Method of Earth Resistance 14
 1. Multi-Point Grounding System .. 14
 2. Limited Point Grounding System 15
 3. Single-Point Grounding System .. 16
IX. Bill of Loading ... 18
X. Parts List and Assembly Details ... 19
 1. Parts List ... 19
 2. Assembly Details ... 20
XI. Trouble shooting .. 21
I. Attention

Thank you for purchasing this ground tester from our company. In order to make better use of the product, please be certain:

----To read this user manual carefully.
----To comply with the operating cautions presented in this manual.

1. Under any circumstances, use the Meter should pay special attention to safety.
2. Pay attention to the measurement range of the Meter and the using environment provided.
3. Pay attention to the text labeled on the panel and back plane of the Meter.
4. Before booting up, the trigger should be pressed for 1-2 times to ensure the jaws are well closed.
5. At Boot time, DO NOT press the trigger, nor clamp any wire.
6. Before the auto inspection is completed and the "OL Ω" symbols are showed, the measured objects cannot be clamped on.
7. The jaw planes contact must be maintained clean, and should not be polished with corrosive and rough materials.
8. Avoid any impact onto this Meter, especially the Jaw contact surface.
9. This Meter will have some buzzing sound in measurement process, and it is normal.
10. The measurement current of the wire should not exceed the upper limit of the Meter.
11. Please take out the batteries in the case of the Meter being idle for a long time.
12. The dismantling, calibration and maintenance the Meter shall be operated by the authorized staff.
13. If the continuing use of it would be dangerous, the Meter should be stopped using immediately, and immediately sealed for the treatment by the authorized agencies.
II. Brief Introduction

Its performance is mainly reflected in:

◆ Breakthrough in self-test the boot a long time to wait, start immediately into the test.
◆ Breakthrough relay self-test mode, using the most advanced processing algorithms and digital integration technology, a fully intelligent.
◆ Break the old product to heavy issues, more in line with characteristics of handheld devices.
◆ New design, panel operation with 6 buttons, better performance.
◆ An increase of sound and light alarm, "beep—beep--beep --" alarm sound.
◆ Increase the interference signal recognition indicator.
◆ Improved anti-jamming capability and test stability.
◆ Stored data: 99 Units.
◆ Wider range: 0.01Ω-1200Ω
◆ Lower power consumption: Maximum operating current not exceeding 50mA.

The ground tester is widely used in the grounding resistance measurement of the power, telecommunications, meteorology, oilfield, construction and the industrial and electrical equipment. In the measurement of a grounding system with loop current, does not require breaking down the grounding wire, and need no auxiliary electrode. It is safe, fast and simple in use.

The ground tester can measure out the faults beyond the reach of the traditional methods, and can be applied in the occasions not in the range of the traditional methods.

The ground tester can measure the integrated value of the grounding body resistance and the grounding lead resistance.
III. Specification

1. Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Jaw specification</th>
<th>Range of measurement</th>
<th>Range of current</th>
<th>Storage function</th>
<th>Alarm function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST-ET16</td>
<td>65mm×32mm</td>
<td>0.01Ω-1200Ω</td>
<td>0.0mA-20.0A</td>
<td>99 Units</td>
<td>√</td>
</tr>
<tr>
<td>BST-ET17</td>
<td>φ32mm</td>
<td>0.01Ω-1200Ω</td>
<td>0.0mA-20.0A</td>
<td>99 Units</td>
<td>√</td>
</tr>
<tr>
<td>BST-ET18</td>
<td>65mm×32mm</td>
<td>0.01Ω-1200Ω</td>
<td>0.0mA-30.0A</td>
<td>99 Units</td>
<td>√</td>
</tr>
<tr>
<td>BST-ET19</td>
<td>φ32mm</td>
<td>0.01Ω-1200Ω</td>
<td>0.0mA-30.0A</td>
<td>99 Units</td>
<td>√</td>
</tr>
</tbody>
</table>

Note: “√” means available.

2. Ranges and Accuracy of Measurement

<table>
<thead>
<tr>
<th>Mode</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>0.010Ω-0.099Ω</td>
<td>0.001Ω</td>
<td>± (1% + 0.01Ω)</td>
</tr>
<tr>
<td></td>
<td>0.10Ω-0.99Ω</td>
<td>0.01Ω</td>
<td>± (1% + 0.01Ω)</td>
</tr>
<tr>
<td></td>
<td>1.0Ω-49.9Ω</td>
<td>0.1Ω</td>
<td>± (1% + 0.1Ω)</td>
</tr>
<tr>
<td></td>
<td>50.0Ω-99.5Ω</td>
<td>0.5Ω</td>
<td>± (1.5% + 0.5Ω)</td>
</tr>
<tr>
<td></td>
<td>100Ω-199Ω</td>
<td>1Ω</td>
<td>± (2% + 1Ω)</td>
</tr>
<tr>
<td></td>
<td>200Ω-395Ω</td>
<td>5Ω</td>
<td>± (5% + 5Ω)</td>
</tr>
<tr>
<td></td>
<td>400-590Ω</td>
<td>10Ω</td>
<td>± (10% + 10Ω)</td>
</tr>
<tr>
<td></td>
<td>600Ω-880Ω</td>
<td>20Ω</td>
<td>± (20% + 20Ω)</td>
</tr>
<tr>
<td></td>
<td>900Ω-1200Ω</td>
<td>30Ω</td>
<td>± (25% + 30Ω)</td>
</tr>
<tr>
<td>Current (True-RMS)</td>
<td>0.00mA -9.00mA</td>
<td>0.05mA</td>
<td>± (2.5% + 2mA)</td>
</tr>
<tr>
<td></td>
<td>10.0mA -99.0mA</td>
<td>0.1mA</td>
<td>± (2.5% + 10mA)</td>
</tr>
<tr>
<td></td>
<td>100mA -300mA</td>
<td>1mA</td>
<td>± (2.5% + 20mA)</td>
</tr>
<tr>
<td></td>
<td>0.3A-2.99A</td>
<td>0.01A</td>
<td>± (2.5% + 0.1A)</td>
</tr>
<tr>
<td></td>
<td>3.0A-9.9A</td>
<td>0.1A</td>
<td>± (2.5% + 0.5A)</td>
</tr>
<tr>
<td></td>
<td>10.0A-20.0A</td>
<td>0.1 A</td>
<td>± (2.5% + 1 A)</td>
</tr>
<tr>
<td></td>
<td>20.0A-30.0A</td>
<td>0.1 A</td>
<td>± (2.5% + 1 A)</td>
</tr>
</tbody>
</table>

Resistance Measurement Frequency: > 1KHz
Measured Current Frequency: 50Hz/60Hz
Setting Range of Resistance Alarm Critical Value: 1Ω-199Ω
Setting Range of Current Alarm Critical Value: 1mA -499Ma
3. Specifications

Instrument safety: IEC/EN61010-1, IEC/EN6010-2-032

Insulation: double insulation

Pollution degree: class II

Overvoltage category: CAT III 150V to ground, Max 20A

Degrees of protection:
- IP30, Group III equipment as per EN 60529 Ed 92
- IK04, as per EN 50102 Ed 95

Dimensions (L x W x H):
- Long jaw: 285mm x 90mm x 66mm; (11 x 4 x 3 inches)
- Round jaw: 260mm x 90mm x 66mm; (10 x 4 x 3 inches)

Span of Jaw: Long jaw 35mm; Round jaw 32mm

Weight (including batteries): Long jaw-1160g, Round jaw-1120g

Battery type: 4 x 1.5V alkaline LR6 AA battery

Low battery indication: is displayed

Internal consumption: <50mA

Auto power off: after 5 minutes of idleness

Display: 4 LCD, sign, decimal point and backlight

Memory size: 99 Units of Reading

Environment (Temperature & Relative Humidity):
- Working: -10°C-55°C, 10%RH-90%RH
- Storage: -20°C-60°C, below 70%RH

Range shift: Full range automatic shifting

External magnetic field: <40A/m

External electric field: <1V/m

Data upload interface: RS232 (Optional)
IV. Structure of Meter

1. Long Pincers Jaw: 65mmx32mm
2. Round Pincer Jaw: φ32mm
3. Trigger: to control opening and closing of jaw
4. HOLD Key: lock / Release display / Storage
5. ON/OFF Key: Boot Up / Shutdown / Quit / Clear Data
6. MEM Key: Data Access / Clear Data
7. AL Alarm Function Key: Alarm Open / Turn Off / Alarm Critical Value Setting
8. Resistance Measure Switch Key Ω (Right Arrow Key)
9. Current Measure Switch Key A (Left Arrow Key)
10. Liquid Crystal Display (LCD)
V. Liquid Crystal Display

1. LCD Screen

(1). Alarm Symbol
(2). Symbol of low battery & voltage
(3). Symbol of full data storage
(4). Symbol of data access
(5). 2-Digital No. Of Data Storage Unit
(6). Current unit
(7). Resistance unit
(8). Noise signal
(9). Data lock symbol
(10). Symbol of an open jaw
(11). Symbol of DC
(12). Metrication decimal point
(13). 4-digital LCD figures display
(14). Symbol of AC

2. Description of Special Symbols

(1). Symbol of an open jaw: As a jaw is in the open state, the symbol shows. At this point, trigger may be artificially pressed, or the jaws have been seriously polluted, and can no longer continue to measure.
(2) “Er” Boot error symbol, May be pressing trigger when boot or jaw has been opened.

(3) Symbol of low battery & voltage: when the battery voltage is lower than 5.3V, the symbol shows. At this time, it cannot guarantee accuracy of the measurements. Batteries should be replaced.

(4) "OL Ω" symbol indicates that the measured resistance has exceeded the upper limit of the Meter.

(5) "LO.01Ω" symbol indicates that the measured resistance has exceeded the lower limit of the Meter.

(6) "OL A" symbol indicates that the measured current has exceeded the upper limit of the Meter.

(7) Alarm symbol: when the measured value is greater than the critical value of alarm setting, the symbol flashes, and the meter issued by intermittent "beep--beep –beep--" sound.

(8) Symbol of full data storage: memory is full of data units of 99, and can no longer continue to store data. MEM symbol flashes.

(9) Symbol of access to data: to display in an access to data, also including the number of data.

(10) NOISE signal: when the symbol flashes, in the measurement of grounding resistance at a greater interference current in the loop. At this time it cannot guarantee accuracy of the measurements.

3. Examples Illustrated

(1) ---Jaw is in open state, and cannot measure

(2) ---Boot error instructions Er (Error)

(3) ---Measured loop resistance is less than 0.01Ω

(4) ---Measured loop resistance is 5.1Ω
(5). --- Measured loop resistance is 2.1Ω
--- Lock the current measurement value: 2.1Ω
--- Auto storage as 08 set data

(6). --- Access to the stored data of Unit No.26
--- Measured loop resistance is 0.028Ω

(7). --- Alarm function activated, the measured current exceeded the critical value of alarm setting
--- Low battery & voltage is displayed. At this time, it not guarantee the accuracy of the measurements
--- Measured current is 8.40A
--- Lock the current value displayed
--- Store the current value as the data Unit No.37

(8). --- Access to the stored data unit No.8
--- Measured resistance is 30Ω
--- This data is measured in a lot of signals interference

VI. Operating Method

1. Boot up

| Boot, DO NOT press the trigger, don’t open jaws, nor clamp any wire |
| Boot complete, show “OL Ω”, then press the trigger, open jaws, clamp the measured wire |
| Before booting up, the trigger should be pressed for a couple of times to ensure the jaws are well closed. |
| Boot, must maintain clamp meter natural resting state, don’t flip Clamp, don’t be imposed outside force on the jaw, otherwise can not guarantee the accuracy of measurement |
Press ON/OFF Key to Boot, first, automated testing LCD, show all of its symbols (Figure 1). Meanwhile the instrument auto-calibration, after boot displayed "OL Ω", automatically enter the resistance measurement mode (Figure 2). If there is no normal boot self-calibration, instrument will show "Er" symbol, said boot error, need to check the cause and reboot (Figure 3).

![Figure 1](image1)
![Figure 2](image2)
![Figure 3](image3)

After ON/OFF On and Self Test if not appear "OL Ω", but shows a large resistance (Figure 4).

However, when measured with the test ring, still gives the correct result, indicating Clamp measured only in the high-value (for example, more than 100Ω) has large errors, When measuring a small resistance retains the original Accuracy, the user can rest assured use.

2. Shutdown
 Press ON/OFF Key to Shutdown.
 5 minutes after boot, LCD display into the blinking state. To reduce battery consumption, blinking state for 30 seconds automatically shut down. In the blinking state press ON/OFF key to delay shutdown, Clamp continue to work.

 In the HOLD state, need to press HOLD key to exit the HOLD state, then press ON/OFF key to shut down.

 In setting Alarm Critical Value state, need to press the ON/OFF key or press the AL key for 3 seconds, exit Alarm Critical Value state, then press ON/OFF key to shut down.
3. Resistance Measurement

After the booting auto-inspection is completed, it shows "OL Ω" and will be able to proceed with resistance measurement. At this point, press the trigger and open the jaws, clamp the target loop, reading to get the resistance value.

If the user thinks it necessary, the test can be done with the ring as shown in the following figure 5. Its show value should be consistent with the normal value on the test ring (5.1Ω). The normal value on the test ring is the value at a temperature of 20°C. It is normal to find the difference of numerical 1 word between the show value and the nominal value. For instance: If the nominal value of test ring is 5.1Ω, it would be normal showing 5.0Ω or 5.2Ω. It shows "OL Ω", indicating that the measured resistance value exceeded the upper limit of Meter, see Figure 2. It shows "L0.01Ω", indicating that the measured resistance value exceeded the lower limit of Meter, see Figure 6.

![Figure 5](image)

![Figure 6](image)

Flashing display symbols "響", go with intermittent "beep--beep--beep--" sound, indicating the measured resistance exceeds the resistance of Alarm Critical Value.

In the HOLD state, need to press HOLD key to exit the HOLD state, then continue measurement.

In the MR state, need to press MEM key to exit the MR state, then continue to measurement.

In setting Alarm Critical Value state, need to press the ON/OFF key or press the AL key for 3 seconds, exit Alarm Critical Value state, then continue to measurement.

In the current test mode, press Ω key to switch to resistance test mode.
4. Current Measurement
After the booting auto-inspection is completed, the Meter automatically enter the resistance measurement mode. Upon showing "OL Ω", press A key, and the Meter enter the current measurement mode, showing "AC 0.00mA", see Figure 7. At this point, press the trigger and open the jaws, clamp the target wire, reading to get the current value.

It shows "OL A", indicating that the measured current value exceeded the upper limit of Meter, see Figure 8.

Flashing display symbols , go with intermittent "beep--beep--beep--" sound, indicating the measured current exceeds the current of Alarm Critical Value.

In the HOLD state, need to press HOLD key to exit the HOLD state, then continue measurement.

In the MR state, need to press MEM key to exit the MR state, then continue to measurement.

In setting Alarm Critical Value state, need to press the ON/OFF key or press the AL key for 3 seconds, exit Alarm Critical Value state, then continue to measurement.

In the resistance test model, press A key to switch to current test model.

5. Date Lock/Release/Storage
In test model, press HOLD key to Lock currently displayed value and HOLD symbol. At the same time, this lock-values as a set of data followed by auto-ID and store, and then press HOLD key to cancel the lock, HOLD symbol disappeared, can continue to measure. Loop operation, can store 99 sets of data. If the memory is full, blinking display MEM symbol.

Figure 9, Lock measured resistance 0.016Ω, at the same time as the first 01 sets of data storage.
As indicated in Figure 10, lock the measured current 278mA, and save it as data unit No.99. And the memory is full now.
blinking display [MEM] symbol.

In the Date Access Model, press [MEM] key to exit, then can lock and storage the data.

In setting Alarm Critical Value state, need to press the ON/OFF key or press the AL key for 3 seconds, exit Alarm Critical Value state, then can lock and storage the data.

Shutdown and then boot up, don’t lose stored data.

6. Data Access

Press [MEM] key to enter Data Access Model, the default display stored in the first 01 Units of data, shown in Figure 11. Then the right arrow keys, up, read the data stored, press the left arrow key, scroll down to the data stored.

If not store data, display shown in Figure 12.

In setting Alarm Critical Value state, need to press the ON/OFF key or press the AL key for 3 seconds, exit Alarm Critical Value state, then press [MEM] key to enter data storage model.

7. Alarm Settings

In the test model, press AL key to turn on or shutdown alarm function.

In test model, press AL key for 3 seconds, then enter to set alarm critical value function, temporality, the highest-digit flashing, first set a maximum bit, shown in Figure 13, Figure 14. Press AL key to switch to the low number, in the current digit flashing, press the left/right arrow keys to change the "0,1,... 9" figures, after the number finished setting, press the AL key for 3 seconds to confirm the current set alarm critical value, when set the alarm function successful, opening alarm function, then automatically return to measurement mode. If the load bigger than the alarm critical, meter will be flashing an alarm symbol, also issued intermittent "beep--beep--beep--" sound.
Setting process, press **ON/OFF** key to exit Alarm Critical Value setting function, return to measurement status, does not change the previous settings.

In data access model, press **MEM** key to exit, then setting Alarm Critical Value.

8. **Access to Alarm Critical Value**
Press **AL** key to enter the mode of resistance or current measurement. Press down **AL** key for 3 sec, you can access to check the alarm critical value, which would flashes in high-digit. The value accessed was set in the last time. And again press down **AL** key for 3 sec or **ON/OFF** key to quit from the access state and return to the measuring state.

As indicated in Figure 15, the alarm critical value of resistance set in the last time is 20Ω.

9. **Clear Data**
In the data access model, press **MEM+ON/OFF**, automatism clear all the stored data. After clearing display show in Figure 12. The data can’t be restore after clear.

VII. Measurement Principle

1. **Principle of Resistance Measurement**
The basic principle in the measurement of resistance is to measure the loop resistance, as shown in the figure below. The jaw part of the Meter is comprised of voltage coil and current coil. The voltage coil provides excitation signal, and will induce a potential E on the measured loop. Under the effects of the potential E, the current I can generate on the measured loop. The Meter will measure E & I, and the measured resistance R can be obtained by the following formula.

\[R = \frac{E}{I} \]
2. Principle of Current Measurement
The basic principle in the measurement of current is the same with that of the measurement of resistance, as shown in the figure below. The AC current on the measured wire, through the current magnetic loop and coil, can generate a induction current I_1. The Meter will measure I_1, and the measured current I can be obtained by the following formula.

$$I = n \cdot I_1$$

Where: n is the turn ratio of the secondary side vs. primary side.

VIII. Measurement Method of Earth Resistance
1. Multi-Point Grounding System
As for the multi-point grounding system (such as electricity transmission tower grounding system, grounding cable communications systems, certain buildings, etc.), They usually pass the overhead ground wire (cable shielding layer) connected to form a grounding system.
As the Meter is in the above measurement, its equivalent electric circuit is shown in the figure below:

Where: R_1 is the target grounding resistance.
R_0 is the equivalent resistance of the other entire tower grounding resistances paralleled.
Although strictly on the theoretical grounding, because of the existence of so-called "mutual resistance", R_0 is not the usual parallel value in the sense of electrical engineering (slightly higher
than its IEC parallel output value). But because a tower-grounding hemisphere was much smaller than the distance between the towers, and with a great number of locations after all, R_0 is much smaller than R_1. Therefore, it can be justified to assume $R_0=0$ from an engineering perspective. In this way, the resistance we measured should be R_1.

Times of comparing tests in different environments and different occasions with the traditional method proved that the above assumption is entirely reasonable.

2. Limited Point Grounding System

This is also quite common. For example, in some towers, five towers are linked with each other through overhead ground wire; besides, the grounding of some of the buildings is not an independent grounding grid, but several grounding bodies connected with each other through the wire. Under such circumstances, the above R_0 regarded as 0, will yield more error on the results of the measurement.

Due to the same reasons mentioned above, we may ignore the impact of the mutual resistance; and the equivalent resistance of the grounding resistance paralleled is calculated by the usual sense. Thus, for the grounding system of N (N is smaller, but larger than 2) grounding bodies, it can offer N equations:

\[
R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N}} = R_{1T}
\]
\[
R_2 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_3} + \cdots + \frac{1}{R_N}} = R_{2T}
\]
\[
R_N + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_{(N-1)}}} = R_{NT}
\]

Where: R_1、R_2、……R_N are grounding resistances of N grounding bodies.

R_{1T}、R_{2T}、……R_{NT} are the resistances measured with the Meter in the different grounding branches.
It is nonlinear equations with N unknown numbers and N equations. It indeed has a definite solution, but it is very difficult to solve the issue artificially, even impossible when N is larger. Therefore, you’re expected to buy the Limited-Point Grounding System Solution software produced by this Company. Users can use the office computer or notebook computer to carry out solutions.

In principle, in addition to ignoring the mutual resistance, this method does not have the measurement error caused by neglecting R_0. However, users need to pay attention to that: in response to the number of the grounding bodies mutually linked in your grounding system, it is necessary to measure the same number of the testing values for calculating of the program, not more or less. And the program would output the same number of grounding resistance values.

3. Single-Point Grounding System

From the measuring principle, the tester can only measure the loop resistance, and the single-point grounding is not measured. However, users will be able to use a testing line very near to the earth electrode of the grounding system to artificially create a loop for testing. The following presented is two kinds of methods for the single-point grounding measurement by use of the Meter. These two methods can be applied to the occasions beyond the reach of the traditional voltage-current testing methods.

(1). Two-Point Method

As shown in the figure below, in the vicinity of the measured grounding body R_A, find an independent grounding body of better grounding state R_B (for example, near a water pipe or a building). R_A and R_B line will connect to each other using a single testing line.
As the resistance value measured by the Meter is the value of the series resistance from the testing line and two grounding resistances.

\[R_T = R_A + R_B + R_L \]

Where: \(R_T \) is the resistance value measured with the Meter.

\(R_L \) is the resistance value of the testing line. Meter can measure out the resistance value by connecting the test lines with both ends.

So, if the measurement value of the Meter is smaller than the allowable value of the grounding resistance, then the two grounding bodies are qualified for grounding resistance.

(2) Three-Point Method

As shown in the figure below, in the vicinity of the measured grounding body \(R_A \), find two independent grounding bodies of better grounding state \(R_B \) and \(R_C \).

First, link \(R_A \) and \(R_B \) with a test line; use the Meter to get the first reading \(R_1 \).

Second, have \(R_B \) and \(R_C \) linked up, as shown in the following figure. Use the Meter to get the second reading \(R_2 \).

Third, have \(R_C \) and \(R_A \) linked up, as shown in the following figure. Use the Meter to get the third reading \(R_3 \).
In the above three steps, the reading measured in each step is the value of the two series grounding resistance. In this way, we can easily calculate the value of each grounding resistance:

From: \[R_1=RA+RB \quad R_2=RB+RC \quad R_3=RC+RA \]

We get: \[RA= \frac{R_1+R_3-R_2}{2} \]

This is the grounding resistance value of the grounding body \(R_A \).

To facilitate the memory of the above formula, these three grounding bodies can be viewed as a triangle; then the measured resistance is equivalent to the value of the resistance values of the adjacent edges plus or minus resistance value of the opposite sides, and divided by 2.

As the reference points, the grounding resistance values of the other two grounding bodies are:

- \(RB=R_1-RA \)
- \(RC=R_3-RA \)

IX. Bill of Loading

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Tester</td>
<td>1 piece</td>
</tr>
<tr>
<td>Test Loop</td>
<td>1 piece</td>
</tr>
<tr>
<td>Carrying Case</td>
<td>1 piece</td>
</tr>
<tr>
<td>User’s Manual</td>
<td>1 piece</td>
</tr>
</tbody>
</table>
X. Parts List and Assembly Details

1. Parts List

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>Part</th>
<th>Quantity/PCS</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screws of battery cover</td>
<td>DS01</td>
<td>1</td>
<td>M3X8</td>
</tr>
<tr>
<td>2</td>
<td>AA alkaline batteries</td>
<td>DS02</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Battery cover</td>
<td>DS03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Upper shell</td>
<td>DS04</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Subjacent shell</td>
<td>DS05</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tension spring</td>
<td>DS06</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Clamp</td>
<td>DS07</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>LCD</td>
<td>DS08</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HOLD key</td>
<td>DS09</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LCD cover</td>
<td>DS10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PCB</td>
<td>DS11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Connect screws of shells</td>
<td>DS12</td>
<td>3</td>
<td>ST2.9X10</td>
</tr>
<tr>
<td>13</td>
<td>Clamp screws</td>
<td>DS13</td>
<td>2</td>
<td>ST2.9X25</td>
</tr>
<tr>
<td>14</td>
<td>Shaft</td>
<td>DS14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Push button</td>
<td>DS15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Screws for PCB fix</td>
<td>DS16</td>
<td>2</td>
<td>ST2.2X6</td>
</tr>
<tr>
<td>17</td>
<td>Screws for LCD fix</td>
<td>DS17</td>
<td>2</td>
<td>ST2.2X6</td>
</tr>
</tbody>
</table>
2. Assembly Details
<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>No batteries.</td>
<td>Set the batteries.</td>
<td></td>
</tr>
<tr>
<td>Faulty battery polarity</td>
<td>Install batteries in correct polarity.</td>
<td></td>
</tr>
<tr>
<td>Insufficient capacity of battery</td>
<td>Replace the batteries.</td>
<td></td>
</tr>
<tr>
<td>Poor contact of battery contacts</td>
<td>Replace the battery contacts.</td>
<td></td>
</tr>
<tr>
<td>Wrong battery type</td>
<td>Replace with right type.</td>
<td></td>
</tr>
<tr>
<td>A break in a battery harness</td>
<td>Make a continuity test of test lead. If there is no continuity, replace the battery harness.</td>
<td></td>
</tr>
<tr>
<td>Departure of the ON/OFF button</td>
<td>Re-assemble the button.</td>
<td></td>
</tr>
<tr>
<td>Poor contact of ON/OFF plug</td>
<td>Re-plug or replace a plug.</td>
<td></td>
</tr>
<tr>
<td>Defect of circuit component</td>
<td>Defect of PCB; when current consumption is about 100mA or more at 6V of battery voltage. Replace the PCB.</td>
<td></td>
</tr>
<tr>
<td>Insufficient capacity of battery</td>
<td>Replace the batteries.</td>
<td></td>
</tr>
<tr>
<td>Contact surface of jaw is polluted by dust, oil etc.</td>
<td>Clean the surface.</td>
<td></td>
</tr>
<tr>
<td>Poor enclose of jaw</td>
<td>Trigger the clamp several times and then re-boot.</td>
<td></td>
</tr>
<tr>
<td>Defect of circuit component</td>
<td>Replace the PCB.</td>
<td></td>
</tr>
<tr>
<td>Measure in wrong steps</td>
<td>Study the manual and follow it.</td>
<td></td>
</tr>
<tr>
<td>Insufficient capacity of battery</td>
<td>Replace the battery when “Low battery” mark is displayed on the LCD.</td>
<td></td>
</tr>
<tr>
<td>Poor enclose of jaw, indicating “jaw-open” symbol on LCD</td>
<td>Trigger the clamp several times and then re-boot.</td>
<td></td>
</tr>
<tr>
<td>Contact surface of jaw is</td>
<td>Clean the surface.</td>
<td></td>
</tr>
<tr>
<td>LCD Indication error (chip of segment, arithmetic point, unit and so on)</td>
<td>polluted by dust, oil etc.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Without self-calibration before test</td>
<td>Re-boot follow the manual, conduct measurement after self-calibration finished.</td>
<td></td>
</tr>
<tr>
<td>Defect of circuit component</td>
<td>Check above points first. If there is no problem, replace the PCB, and do re-adjustment.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCD Indication error (chip of segment, arithmetic point, unit and so on)</th>
<th>Incapable to hold reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor contact of LCD connection wire</td>
<td>Re-plug the LCD connect plug or replace the plug.</td>
</tr>
<tr>
<td>Defect of LCD</td>
<td>Replace the LCD.</td>
</tr>
<tr>
<td>Insufficient capacity of battery</td>
<td>Replace the batteries.</td>
</tr>
<tr>
<td>Defect of circuit component</td>
<td>Replace the PCB.</td>
</tr>
<tr>
<td>HOLD button Depart from the position</td>
<td>Re-assemble the button</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incapable to hold reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect of circuit component</td>
</tr>
</tbody>
</table>