Phone 800-517-8431
Note: Image is Representative of Series;
Refer to Product Title for Model Specifications.

Tektronix MDO4054CGSA

500 MHz, 4-Channel, 5 GS/s Mixed Domain Oscilloscope *US Government Edition*

Brand: Tektronix
Model No: MDO4054CGSA
Our Model No: MDO4054CGSA
Condition: NEW
PDF Document Icon Data Sheet (2.82 MB)

GSA Only, Please Call

Direct: (339) 239-4066

Product Features:

1. Oscilloscope

  • 4 analog channels
  • 500 MHz bandwidth
  • 700 ps rise time
  • 2.5 GS/s sample rate
  • 20 M record length on all channels
  • > 340, 000 wfm/s maximum waveform capture rate
  • Standard passive voltage probes with 3.9 pF capacitive loading and 1 GHz or 500 MHz analog bandwidth

2. Spectrum Analyzer (Optional)

  • Frequency range of 9 kHz - 3 GHz, or 9 kHz 6 - GHz
  • Ultrawide capture bandwidth ≥1 GHz
  • Timesynchronized capture of spectrum analyzer with analog and digital acquisitions
  • Frequency vs. time, amplitude vs. time, and phase vs. time waveforms

3. Arbitrary/Function Generator (Optional)

  • 13 predefined waveform types
  • 50 MHz waveform generation
  • 128 k arbitrary generator record length
  • 250 MS/s arbitrary generator sample rate

4. Logic Analyzer (Optional) 16 digital channels

  • 20 M record length on all channels
  • 60.6 ps timing resolution

5. Protocol Analyzer (Optional)

  • Serial bus support for I2C, SPI, RS232/422/485/UART, USB 2.0, Ethernet, CAN, LIN, FlexRay, MILSTD1553, and Audio standards

6. Digital Voltmeter/Frequency Counter (Free with product registration)

  • 4-digit AC RMS, DC, and AC+DC RMS voltage measurements
  • 5-digit frequency measurements


  • Embedded Design: Discover and solve issues quickly by performing system level debug on mixed signal embedded systems, including today's most common serial bus and wireless technologies
  • Power Design: Make reliable and repeatable voltage, current, and power measurements using automated power quality, switching loss, harmonics, ripple, modulation, and safe operating area measurements with wide selection of power probes
  • EMI Troubleshooting: Quickly track down source of EMI in embedded systems by determining which time domain signals may be causing unwanted EMI
  • See effects time domain signals have on system EMI emissions in real-time
  • Wireless Troubleshooting: Enables viewing entire system (analog, digital, and RF) time-synchronized to understand true system behavior
  • Capture ultrawide band in single capture to view interactions among multiple wireless technologies, or to view entire broadband frequency range from modern standard like 802.11/ad
  • Education
  • Eliminates need to manage multiple instruments by integrating six instrument types into single unit
  • Integration of spectrum analyzer enables teaching of advanced wireless technology courses, while minimizing investment
  • Full upgradability enables adding functionality over time as needs change or budgets allow
  • Manufacturing Tests and Troubleshooting: Unique, 6-in-1 design minimizes rack or bench space by integrating multiple instruments into single, small package
  • Integration reduces costs associated with utilizing multiple different instrument types in manufacturing tests, or at troubleshooting stations

The Tektronix MDO4054C 200 MHz, 4-Channel, 2.5 GS/s, 6-in-1 Mixed Domain Oscilloscope includes a spectrum analyzer, arbitrary/function generator, logic analyzer, protocol analyzer and DVM/frequency counter. The MDO4054C has the performance you need to solve the toughest embedded design challenges quickly and efficiently. When configured with an integrated spectrum analyzer, it is the only instrument that provides simultaneous and synchronized acquisition of analog, digital and spectrum, ideal for incorporating wireless communications (IoT) and EMI troubleshooting. The MDO4054C is completely customizable and fully upgradable so you can add the instruments you need now, or later.

1. Oscilloscope

At the core of the MDO4054C is a world-class oscilloscope, offering comprehensive tools that speed each stage of debug - from quickly discovering anomalies and capturing them, to searching your waveform record for events of interest and analyzing their characteristics and your device's behavior.

Digital Phosphor Technology with Fastacq High-Speed Waveform Capture

Digital phosphor technology enables a greater than 340, 000 wfm/s waveform capture rate and real-time intensity grading. Click for larger image

Digital Phosphor Technology

To debug a design problem, first you must know it exists. Every design engineer spends time looking for problems in their design, a time-consuming and frustrating task without the right debug tools.

Digital phosphor technology with FastAcq provides you with fast insight into the real operation of your device. Its fast waveform capture rate - greater than 340, 000 wfms/s - gives you a high probability of quickly seeing the infrequent problems common in digital systems: runt pulses, glitches, timing issues, and more.

To further enhance the visibility of rarely occurring events, intensity grading is used to indicate how often rare transients are occurring relative to normal signal characteristics.

There are four waveform palettes available in FastAcq acquisition mode:

  • The Temperature palette uses color-grading to indicate frequency of occurrence with hot colors like red/yellow indicating frequently occurring events and colder colors like blue/green indicating rarely occurring events.
  • The Spectral palette uses color-grading to indicate frequency of occurrence with colder colors like blue indicating frequently occurring events and hot colors like red indicating rarely occurring events.
  • The Normal palette uses the default channel color (like yellow for channel one) along with gray-scale to indicate frequency of occurrence where frequently occurring events are bright.
  • The Inverted palette uses the default channel color along with grayscale to indicate frequency of occurrence where rarely occurring events are bright.

These color palettes quickly highlight the events that over time occur more often or, in the case of infrequent anomalies, occur less often.

Infinite or variable persistence choices determine how long waveforms stay on the display, helping you to determine how often an anomaly is occurring.

Over 125 trigger combinations make capturing your event of interest easy. Click for larger image

Trigger Combinations


Discovering a device fault is only the first step. Next, you must capture the event of interest to identify root cause. To enable this, the MDO4054C contains over 125 trigger combinations providing a complete set of triggers - including runt, logic, pulse width/glitch, setup and hold violation, serial packet, and parallel data - to help quickly locate your event of interest. And with up to a 20 M record length, you can capture many events of interest, even thousands of serial packets, in a single acquisition for further analysis while maintaining high resolution to zoom in on fine signal details and record reliable measurements.

Wave Inspector Waveform Navigation and Automated Search

With long record lengths, a single acquisition can include thousands of screens of waveform data. Wave Inspector, the industry's best tool for waveform navigation and automated search, enables you to find events of interest in seconds.

Zoom and Pan

A dedicated, two-tier front-panel control provides intuitive control of both zooming and panning. The inner control adjusts the zoom factor (or zoom scale); turning it clockwise activates zoom and goes to progressively higher zoom factors, while turning it counterclockwise results in lower zoom factors and eventually turning zoom off. No longer do you need to navigate through multiple menus to adjust your zoom view. The outer control pans the zoom box across the waveform to quickly get to the portion of waveform you are interested in. The outer control also utilizes force-feedback to determine how fast to pan on the waveform. The farther you turn the outer control, the faster the zoom box moves. Pan direction is changed by simply turning the control the other way.

Search step 1: Define what you would like to find. Click for larger image

Search Step 1:

Search step 2: The Wave Inspector automatically searches through the record and marks each event with a hollow white triangle; use Click for larger image

Search Step 2:

Search step 3: The Search Mark table provides a tabular view of each of the events found by the automated search; events are shown with a time stamp making timing measurements between events easy. Click for larger image

Search Step 3:

User Marks

Press the Set Mark front-panel button to place one or more marks on the waveform. Navigating between marks is as simple as pressing the Previous and Next buttons on the front panel.

Search Marks

The Search button allows you to automatically search through your long acquisition looking for user-defined events. All occurrences of the event are highlighted with search marks and are easily navigated to, using the front panel Previous and Next buttons. Search types include edge, pulse width/glitch, timeout, runt, logic, setup and hold, rise/fall time, parallel bus, and I2C, SPI, RS-232/422/485/UART, USB 2.0, Ethernet, CAN, LIN, FlexRay, MIL-STD-1553, and I2S/LJ/RJ/ TDM packet content. A search mark table provides a tabular view of the events found during the automated search. Each event is shown with a time stamp, making timing measurements between events easy.

The automated measurement readouts provide repeatable, statistical views of waveform characteristics. Click for larger image

Automated Measurement Readouts

Waveform Analysis

Verifying that your prototype's performance matches simulations and meets the project's design goals requires analyzing its behavior. Tasks can range from simple checks of rise times and pulse widths to sophisticated power loss analysis and investigation of noise sources.

The oscilloscope offers a comprehensive set of integrated analysis tools including waveform-and screen-based cursors, automated measurements, advanced waveform math including arbitrary equation editing, FFT analysis, waveform histograms, and trend plots for visually determining how a measurement is changing over time.

The waveform histogram of a rising edge shows the distribution of edge position (jitter) over time; it includes numeric measurements made on the waveform histogram data. Click for larger image

Waveform Histograms

Waveform Histograms

Show visually how waveforms vary over time. Horizontal waveform histograms are especially useful for gaining insight into how much jitter is on a clock signal, and what the distribution of that jitter is. Vertical histograms are especially useful for gaining insight into how much noise is on a signal, and what the distribution of that noise is.

Measurements taken on a waveform histogram provide analytical information about the distribution of a waveform histogram, providing insight into just how broad a distribution is, the amount of standard deviation, the mean value, etc.

The video picture mode contains automatic contrast and brightness settings as well as manual controls. Click for larger image

NTSC Video Signals

Video Design and Development (Optional)

Many video engineers have remained loyal to analog oscilloscopes, believing the intensity gradations on an analog display are the only way to see certain video waveform details. The fast waveform capture rate, coupled with its intensity-graded view of the signal, provides the same information-rich display as an analog oscilloscope, but with much more detail and all the benefits of digital scopes.

Standard features such as IRE and mV graticules, holdoff by fields, video polarity, and an Autoset smart enough to detect video signals, make these the easiest to use oscilloscopes on the market for video applications. And with high bandwidth and four analog inputs, the oscilloscope provides ample performance for analog and digital video use.

The video functionality is further extended with an optional video application module, which provides the industry's most complete suite of HDTV and custom (nonstandard) video triggers, as well as a video picture mode enabling you to see the picture of the video signal you are viewing - for NTSC and PAL signals. The optional video analysis functionality is offered free for a 30-day trial period. This free trial period starts automatically when the instrument is powered on for the first time.

The automated power measurements enable quick and accurate analysis of common power parameters. Click for larger image

Power Quality Measurements

Power Analysis (Optional)

Ever increasing consumer demand for longer battery-life devices and for green solutions that consume less power require power-supply designers to characterize and minimize switching losses to improve efficiency. In addition, the supply's power levels, output purity, and harmonic feedback into the power line must be characterized to comply with national and regional power quality standards. Historically, making these and many other power measurements on an oscilloscope has been a long, manual, and tedious process. The optional power analysis tools greatly simplify these tasks, enabling quick and accurate analysis of power quality, switching loss, harmonics, safe operating area (SOA), modulation, ripple, and slew rate (di/dt, dv/dt). Completely integrated into the oscilloscope, the power analysis tools provide automated, repeatable power measurements with a touch of a button; no external PC or complex software setup is required. The optional power analysis functionality is offered free for a 30-day trial period. This free trial period starts automatically when the instrument is powered on for the first time.

The Limit Test shows a mask created from a golden waveform and compared against a live signal; results show statistical information about the test. Click for larger image

Limit Test

Limit-Mask Testing (Optional)

A common task during the development process is characterizing the behavior of certain signals in a system. One method, called limit testing, is to compare a tested signal to a known good or "golden" version of the same signal with user-defined vertical and horizontal tolerances. Another common method, called mask testing, is to compare a tested signal to a mask, looking for where a signal under test violates the mask. The MDO4054C offers both limit and mask testing capability useful for long-term signal monitoring, characterizing signals during design, or testing on a production line. A robust set of telecommunications and computer standards are provided to test for compliance to a standard. Additionally, custom masks can be created and used for characterizing signals. Tailor a test to your specific requirements by defining test duration in number of waveforms or time, a violation threshold that must be met before considering a test a failure, counting hits along with statistical information, and actions upon violations, test failure, and test complete. Whether specifying a mask from a known good signal or from a custom or standard mask, conducting pass/fail tests in search of waveform anomalies such as glitches has never been easier. The optional limit/ mask test functionality is offered free for a 30-day trial period. This free trial period starts automatically when the instrument is powered on for the first time.

2. Spectrum Analyzer (Optional)

The automated peak markers identify critical information at a glance; here, the five highest amplitude peaks that meet the threshold and excursion criteria are automatically marked along with the peak's frequency and amplitude. Click for larger image

Automated Peak Markers

Fast and Accurate Spectral Analysis

When using the optional spectrum analyzer input by itself, the MDO4054C display becomes a full-screen Frequency Domain view.

Key spectral parameters such as Center Frequency, Span, Reference Level, and Resolution Bandwidth are all adjusted quickly and easily using the dedicated front-panel menus and keypad.

Intelligent Efficient Markers

In a traditional spectrum analyzer, it can be a very tedious task to turn on and place enough markers to identify all your peaks of interest. The MDO4054C makes this process far more efficient by automatically placing markers on peaks that indicate both the frequency and the amplitude of each peak. You can adjust the criteria that the oscilloscope uses to automatically find the peaks.

The highest amplitude peak is referred to as the reference marker and is shown in red. Marker readouts can be switched between Absolute and Delta readouts. When Delta is selected, marker readouts show each peak's delta frequency and delta amplitude from the reference marker.

Two manual markers are also available for measuring nonpeak portions of the spectrum. When enabled, the reference marker is attached to one of the manual markers, enabling delta measurements from anywhere in the spectrum. In addition to frequency and amplitude, manual marker readouts also include noise density and phase noise readouts depending on whether Absolute or Delta readouts are selected. A "Reference Marker to Center" function instantly moves the frequency indicated by the reference marker to center frequency.

The spectrogram display illustrates slowly moving RF phenomena; here, a signal that has multiple peaks is being monitored, and as the peaks change in both frequency and amplitude over time, the changes are easily visible. Click for larger image

Spectrogram Display


The MDO4054C with option SA3 or SA6 includes a spectrogram display which is ideal for monitoring slowly changing RF phenomena. The ×-axis represents frequency, just like a typical spectrum display. However, the y-axis represents time, and color is used to indicate amplitude.

Spectrogram slices are generated by taking each spectrum and "flipping it up on its edge" so that it's one pixel row tall, and then assigning colors to each pixel based on the amplitude at that frequency. Cold colors (blue, green) are low amplitude and hotter colors (yellow, red) are higher amplitude. Each new acquisition adds another slice at the bottom of the spectrogram and the history moves up one row. When acquisitions are stopped, you can scroll back through the spectrogram to look at any individual spectrum slice.

The spectral display of a bursted communication both into a device through Zigbee at 900 MHz and out of the device through Bluetooth at 2.4 GHz is captured with a single acquisition. Click for larger image

Spectral Display

Ultra-Wide Capture Bandwidth

Today's wireless communications vary significantly with time, using sophisticated digital modulation schemes and, often, transmission techniques that involve bursting the output. These modulation schemes can have very wide bandwidth as well. Traditional swept or stepped spectrum analyzers are ill equipped to view these types of signals as they are only able to look at a small portion of the spectrum at any one time.

The amount of spectrum acquired in one acquisition is called the capture bandwidth. Traditional spectrum analyzers sweep or step the capture bandwidth through the desired span to build the requested image. As a result, while the spectrum analyzer is acquiring one portion of the spectrum, the event you care about may be happening in another portion of the spectrum. Most spectrum analyzers on the market today have 10 MHz capture bandwidths, sometimes with expensive options to extend that to 20, 40, or even 160 MHz in some cases.

In order to address the bandwidth requirements of modern RF, the MDO4054C provides ≥1 GHz of capture bandwidth. At span settings of 1 GHz and below, there is no requirement to sweep the display. The spectrum is generated from a single acquisition, thus guaranteeing you'll see the events you're looking for in the frequency domain. And because the integrated spectrum analyzer has a dedicated RF input, the bandwidth is flat all the way out to 3 GHz or 6 GHz, unlike a scope FFT that rolls off to 3 dB down at the rated bandwidth of the input channel.

Spectrum Traces

The MDO4054C spectrum analyzer offers four different traces or views including Normal, Average, Max Hold, and Min Hold. You can set the detection method used for each trace type independently or you can leave the oscilloscope in the default Auto mode that sets the detection type optimally for the current configuration. Detection types include +Peak, - Peak, Average, and Sample.Triggered versus Free Run Operation

When both the time and frequency domains are displayed, the spectrum shown is always triggered by the system trigger event and is time-synchronized with the active timedomain traces. However, when only the frequency domain is displayed, the spectrum analyzer can be set to Free Run. This is useful when the frequency domain data is continuous and unrelated to events occurring in the time domain.

Advanced Triggering with Analog, Digital and Spectrum Analyzer Channels

In order to deal with the time-varying nature of modern RF applications, the MDO4054C provides a triggered acquisition system that is fully integrated with the analog, digital and spectrum analyzer channels. This means that a single trigger event coordinates acquisition across all channels, allowing you to capture a spectrum at the precise point in time where an interesting time domain event is occurring. A comprehensive set of time domain triggers are available, including Edge, Sequence, Pulse Width, Timeout, Runt, Logic, Setup/Hold Violation, Rise/Fall Time, Video, and a variety of parallel and serial bus packet triggers. In addition, you can trigger on the power level of the spectrum analyzer input. For example, you can trigger on your RF transmitter turning on or off.

The optional MDO4TRIG application module provides advanced RF triggering. This module enables the RF power level on the spectrum analyzer to be used as a source for Sequence, Pulse Width, Timeout, Runt, and Logic trigger types. For example, you can trigger on a RF pulse of a specific length or use the spectrum analyzer channel as an input to a logic trigger, enabling the oscilloscope to trigger only when the RF is on while other signals are active.

RF Measurements

The MDO4054C includes three automated RF measurements - Channel Power, Adjacent Channel Power Ratio, and Occupied Bandwidth. When one of these RF measurements is activated, the oscilloscope automatically turns on the Average spectrum trace and sets the detection method to Average for optimal measurement results.

EMI Troubleshooting

EMC testing is expensive regardless of whether you purchase the equipment to perform in-house testing or you pay an external test facility to certify your product. And that assumes that your product passes the first time. Multiple visits to a test house can add significant cost and delay to your project. The key to minimizing this expense is early identification and debug of EMI issues. Traditionally, spectrum analyzers with near field probe sets have been used to identify the location and amplitude of offending frequencies, but their ability to determine the cause of the issue is very limited. Designers are increasingly using oscilloscopes and logic analyzers as EMI issues become more transient due to the complex interactions of numerous digital circuits in modern designs.

The MDO4054C, with its integrated oscilloscope, logic analyzer, and spectrum analyzer is the ultimate tool for debugging modern EMI issues. Many EMI problems are caused from events rooted in the time domain, such as clocks, power supplies, and serial data links. With its ability to provide time correlated views of analog, digital, and RF signals, the MDO4054C is the only instrument available that can discover the connection between time-domain events and offending spectral emissions.

RF Probing

Signal input methods on spectrum analyzers are typically limited to cabled connections or antennas. But with the optional TPA-N-VPI adapter, any active, 50 Ω TekVPI probe can be used with the spectrum analyzer on the MDO4054C. This enables additional flexibility when hunting for noise sources and enables easier spectral analysis by using true signal browsing on an RF input.

In addition, an optional preamplifier accessory assists in the investigation of lower-amplitude signals. The TPA-N-PRE preamplifier provides 12 dB nominal gain across the 9 kHz-6 GHz frequency range.

The orange waveform in the Time Domain view is the frequency vs. time trace derived from the spectrum analyzer input signal. Click for larger image

Time Domain View: Orange Waveform

The orange bar (Spectrum Time) shows the period of time used to calculate the RF spectrum. Click for larger image

Spectrum Time: Orange Bar

Time and Frequency Domain view shows the turn-on of a PLL. Click for larger image

Time and Frequency Domain

Visualizing Changes in your RF Signal

The time domain graticule on the MDO4054C display provides support for three RF time domain traces that are derived from the underlying I and Q data of the spectrum analyzer input including:

  • Amplitude - The instantaneous amplitude of the spectrum analyzer input vs. time
  • Frequency - The instantaneous frequency of the spectrum analyzer input, relative to the center frequency vs. time
  • Phase - The instantaneous phase of the spectrum analyzer input, relative to the center frequency vs. time

Each of these traces may be turned on and off independently, and all three may be displayed simultaneously. RF time domain traces make it easy to understand what's happening with a time-varying RF signal.

Advanced RF Analysis

When paired with SignalVu-PC and its Live Link option, the MDO4054C becomes the industry's widest bandwidth Vector Signal Analyzer with up to 1 GHz capture bandwidth. Whether your design validation needs include Wireless LAN, wideband radar, high data rate satellite links, or frequencyhopping communications, SignalVu-PC vector signal analysis software can speed your time-to-insight by showing you the time-variant behavior of these wideband signals. Available analysis options include Wi-Fi (IEEE 802.11 a/b/g/j/n/p/ac) signal quality analysis, Bluetooth Tx compliance, pulse analysis, audio measurements, AM/FM/PM modulation analysis, general purpose digital modulation and more.

Time Synchronized Insights into Analog, Digital, and RF

The MDO4054C is the world's first oscilloscope with a built in spectrum analyzer. This integration enables you to continue to use your debug tool of choice, the oscilloscope, to investigate frequency domain issues rather than having to find and re-learn a spectrum analyzer.

However, the power of the MDO4054C goes well beyond simply observing the frequency domain as you would on a spectrum analyzer. The real power is in its ability to correlate events in the frequency domain with the time domain phenomena that caused them.

When both the spectrum analyzer and any analog or digital channels are on, the oscilloscope display is split into two views. The upper half of the display is a traditional oscilloscope view of the Time Domain. The lower half of the display is a Frequency Domain view of the spectrum analyzer input. Note that the Frequency Domain view is not simply an FFT of the analog or digital channels in the instrument, but is the spectrum acquired from the spectrum analyzer input.

Another key difference is that with traditional oscilloscope FFTs, you can typically either get the desired view of the FFT display, or the desired view of your other time domain signals of interest, but never both at the same time. This is because traditional oscilloscopes only have a single acquisition system with a single set of user settings such as record length, sample rate, and time per division that drive all data views. But with the MDO4054C, the spectrum analyzer has its own acquisition system that is independent, but time correlated, to the analog and digital channel acquisition systems. This allows each domain to be configured optimally, providing a complete time correlated system view of all analog, digital, and RF signals of interest.

The spectrum shown in the Frequency Domain view is taken from the period of time indicated by the short orange bar in the time domain view - known as the Spectrum Time. With the MDO4054C, Spectrum Time can be moved through the acquisition to investigate how the RF spectrum changes over time. And this can be done while the oscilloscope is live and running or on a stopped acquisition.

3. Arbitrary Function Generator (Optional)

The waveform type selection is integrated in the AFG. Click for larger image

Waveform Type Selection

The MDO4054C contains an optional integrated arbitrary function generator (option MDO4AFG), perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing.

The integrated function generator provides output of predefined waveforms up to 50 MHz for sine, square, pulse, ramp/triangle, DC, noise, sin(x)/x (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac.

The arbitrary waveform editor shows the point-by-point editor. Click for larger image

Arbitrary Waveform Editor

The arbitrary waveform generator provides 128 k points of record for storing waveforms from the analog input, a saved internal file location, a USB mass storage device, or from an external PC. Once a waveform is in the edit memory of the arbitrary waveform generator, it can be modified via an on-screen editor and then replicated out of the generator. The MDO4054C is compatible with Tektronix' ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy. Transfer waveform files to your MDO4054C edit memory via USB or LAN or using a USB mass storage device to be output from the AFG in the oscilloscope.

4. Logic Analyzer (Optional)

There are 16 integrated digital channels, enabling users to view and analyze time-correlated analog and digital signals. Click for larger image

16 Integrated Digital Channels

The logic analyzer (option MDO4MSO) provides 16 digital channels which are tightly integrated into the oscilloscope's user interface. This simplifies operation and makes it possible to solve mixed-signal issues easily.

Color-Coded Digital Waveform Display

Color-coded digital traces display ones in green and zeros in blue. This coloring is also used in the digital channel monitor. The monitor shows if signals are high, low, or are transitioning so you can see channel activity at a glance without having to clutter your display with unneeded digital waveforms.

The multiple transition detection hardware shows you a white edge on the display when the system detects multiple transitions. White edges indicate that more information is available by zooming in or acquiring at faster sampling rates. In most cases zooming in will reveal the pulse that was not viewable with the previous settings. If the white edge is still present after zooming in as far as possible, this indicates that increasing the sample rate on the next acquisition will reveal higher frequency information than the previous settings could acquire.

You can group digital waveforms and enter waveform labels by using a USB keyboard. By simply placing digital waveforms next to each other, they form a group.

Once a group is formed, you can position all the channels contained in that group collectively. This greatly reduces the normal setup time associated with positioning channels individually.

MagniVu High-Speed Acquisition

The main digital acquisition mode on the MSO4000C Series will capture up to 20M points at 500 MS/s (2 ns resolution). In addition to the main record, the oscilloscope provides an ultra high-resolution record called MagniVu which acquires 10, 000 points at up to 16.5 GS/s (60.6 ps resolution). Both main and MagniVu waveforms are acquired on every trigger and can be switched between in the display at any time, running or stopped. MagniVu provides significantly finer timing resolution than comparable MSOs on the market, instilling confidence when making critical timing measurements on digital waveforms.

5. Serial Protocol Triggering and Analysis (Optional)

Triggering on a specific OUT Token packet on a USB full-speed serial bus, the yellow waveform is the D+ and the blue waveform is the D-; a bus waveform provides decoded packet content including Start, Sync, PID, Address, End Point, CRC, Data values, and Stop. Click for larger image

Token Address Packet

On a serial bus, a single signal often includes address, control, data, and clock information. This can make isolating events of interest difficult.

Automatic trigger, decode, and search on bus events and conditions gives you a robust set of tools for debugging serial buses. The optional serial protocol triggering and analysis functionality is offered free for a 30-day trial period. This free trial period starts automatically when the instrument is powered on for the first time.

Serial Triggering

Trigger on packet content such as start of packet, specific addresses, specific data content, unique identifiers, etc. on popular serial interfaces such as I2C, SPI, USB 2.0, Ethernet, CAN, LIN, FlexRay, RS-232/422/485/UART, MIL-STD-1553, and I2S/LJ/RJ/TDM.

Bus Display

Provides a higher-level, combined view of the individual signals (clock, data, chip enable, etc.) that make up your bus, making it easy to identify where packets begin and end and identifying sub-packet components such as address, data, identifier, CRC, etc.

Bus Decoding

Tired of having to visually inspect the waveform to count clocks, determine if each bit is a 1 or a 0, combine bits into bytes, and determine the hex value? Let the oscilloscope do it for you! Once you've set up a bus, the MSO/DPO4000C Series will decode each packet on the bus, and display the value in hex, binary, decimal (USB, Ethernet, MILSTD- 1553, LIN, and FlexRay only), signed decimal (I2S/LJ/RJ/ TDM only), or ASCII (USB, Ethernet, and RS-232/422/485/ UART only) in the bus waveform.

The event table shows the decoded identifier, DLC, DATA, and CRC for every CAN packet in a long acquisition. Click for larger image

Event Table

Event Table

In addition to seeing decoded packet data on the bus waveform itself, you can view all captured packets in a tabular view much like you would see in a software listing. Packets are time stamped and listed consecutively with columns for each component (Address, Data, etc.). You can save the event table data in .csv format.

Search (Serial Triggering)

Serial triggering is very useful for isolating the event of interest, but once you've captured it and need to analyze the surrounding data, what do you do? In the past, users had to manually scroll through the waveform counting and converting bits and looking for what caused the event. You can have the oscilloscope automatically search through the acquired data for user-defined criteria including serial packet content. Each occurrence is highlighted by a search mark. Rapid navigation between marks is as simple as pressing the Previous and Next buttons on the front panel.

6. Digital Voltmeter (DVM) and Frequency Counter

A DC measurement value is shown with a five second variation along with minimum, maximum, and average voltage values. Click for larger image

DC Measurement Values

The MDO4054C contains an integrated 4-digit digital voltmeter (DVM) and 5-digit frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The easy-to-read display offers you both numeric and graphical representations of the changing measurement values. The display also shows minimum, maximum, and average values of the measurement as well as the range of values measured over the previous five second interval. The DVM and frequency counter is available on any MDO4054C and is activated when you register your product.

The MDO4000C Series Platform

Large, High-Resolution Display

The MDO4054C features a 10.4 in. (264 mm) bright, LED backlit XGA color display for seeing intricate signal details.


The MDO4054C contains a number of ports which can be used to connect the instrument to a network, directly to a PC, or other test equipment.

  • Two USB 2.0 host ports on the front and two USB host ports on the rear enable easy transfer of screen shots, instrument settings, and waveform data to a USB mass storage device. A USB keyboard can also be attached to a USB host port for data entry.
  • Rear USB 2.0 device port is useful for controlling the oscilloscope remotely from a PC or for printing directly to a PictBridge-compatible printer.
  • The standard 10/100/1000BASE-T Ethernet port on the rear of the instrument enables easy connection to networks, provides network and e-mail printing, and provides LXI Core 2011 compatibility. The instrument can also mount network drives for easy storage of screen images, setup files, or data files.
  • A video out port on the rear of the instrument allows the display to be exported to an external monitor or projector.

Remote Connectivity and Instrument Control

Exporting data and measurements is as simple as connecting a USB cable from the oscilloscope to your PC. Key software applications - OpenChoice Desktop, and Microsoft Excel and Word toolbars - are included standard with each oscilloscope to enable fast and easy direct communication with your Windows PC.

The included OpenChoice Desktop enables fast and easy communication between the oscilloscope and your PC through USB or LAN for transferring settings, waveforms, and screen images.

The embedded e-Scope capability enables fast control of the oscilloscope over a network connection through a standard web browser.

Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Transfer and save settings, waveforms, measurements, and screen images or make live control changes to settings on the oscilloscope directly from the web browser.


The MDO4054C scope ships standard with passive voltage probes and uses the TekVPI probe interface.

Standard Passive Voltage Probes

The MDO4054C include passive voltage probes with industry best capacitive loading of only 3.9 pF. The included TPP probes minimize the impact on devices under test and accurately deliver signals to the oscilloscope for acquisition and analysis. The probe bandwidth matches or exceeds your oscilloscope bandwidth so you can see the high-frequency components in your signal which is critical for high-speed applications. The TPP Series passive voltage probes offer all the benefits of general-purpose probes like high dynamic range, flexible connection options, and robust mechanical design, while providing the performance of active probes.

In addition, a low-attenuation, 2× version of the TPP probes is available for measuring low voltages. Unlike other lowattenuation passive probes, the TPP0502 has high bandwidth (500 MHz) as well as low capacitive loading (12.7 pF).

TekVPI Probe Interface

The TekVPI probe interface sets the standard for ease of use in probing. In addition to the secure, reliable connection that the interface provides, TekVPI probes feature status indicators and controls, as well as a probe menu button right on the comp box itself. This button brings up a probe menu on the oscilloscope display with all relevant settings and controls for the probe. The TekVPI interface enables direct attachment of current probes without requiring a separate power supply. TekVPI probes can be controlled remotely through USB, GPIB, or LAN, enabling more versatile solutions in ATE environments. The instrument provides up to 25 W of power to the front panel connectors from the internal power supply.

  • 1 - 500 MHz, 4-Channel, 2.5 GS/s, 6-in-1 Mixed Domain Oscilloscope
  • 4 - 500 MHz Bandwidth/10X/3.9 pF. Passive Voltage Probes (TPP0500B)
  • 1 - Front Cover
  • 1 - Accessory Bag
  • 1 - Power Cord
  • 1 - User Manual
  • 1 - OpenChoice Desktop Software
  • 1 - 3-Year Warranty
Model Description Buy Now Price
119-6609-00 Tektronix 119-6609-00 BNC Whip Antenna, Rubber Covered, Kd4 VHF, Untuned, Rubber Cap Glued On Add to Cart


TEK-DPG Tektronix TEK-DPG Accessory, Deskew Pulse Generator Signal Source with TekVPI Scope Interface Add to Cart


TPA-BNC Tektronix TPA-BNC TekVPI to TekProbe BNC adapter Add to Cart


TPA-N-PRE Tektronix TPA-N-PRE External Preamp., Tpa Connector, Sma Input Add to Cart


TPA-N-VPI Tektronix TPA-N-VPI Probe Adapter From Type-N Connector To Tekvpi Add to Cart


TEK-USB-488 Tektronix TEK-USB-488 USB TO IEEE488 (GPIB) Communications Adapt Add to Cart


Application Modules
Model Description Buy Now Price
DPO4BND Tektronix DPO4BND Application Module Bundle Add to Cart


MDO4TRIG Tektronix MDO4TRIG Advanced RF Triggering Application Module - Width, Runt, Timeout, and Logic triggers on the RF input of the MDO4000 Series Add to Cart Discontinued
Carrying Cases
Model Description Buy Now Price
ACD4000B Tektronix ACD4000B Soft Carrying Case Add to Cart


Model Description Buy Now Price
See Also: Oscilloscope Probes Selection GuideTektronix Oscilloscope Probes
119-4146-00 Tektronix 119-4146-00 Probe Set; RF Measurement, Near Field Probe Set, Passive, Hand Held Add to Cart


P5100A Tektronix P5100A 500 MHz, 100X Single-Ended High Voltage Probe Add to Cart


P5200A Tektronix P5200A 50 MHz, 50X/500X High Voltage Differential Probe Add to Cart


TAP1500 Tektronix TAP1500 1.5 GHz Single-Ended Low Voltage Probe Add to Cart


TAP2500 Tektronix TAP2500 2.5 GHz Single-Ended Low Voltage Probe Add to Cart


TAP3500 Tektronix TAP3500 3.5 GHz Single-Ended Low Voltage Probe Add to Cart


TCP0030A Tektronix TCP0030A 120 MHz, 30A TekVPI AC/DC Current Probe Add to Cart


TCP0150 Tektronix TCP0150 20 MHz, 150A TekVPI AC/DC Current Probe Add to Cart


TDP0500 Tektronix TDP0500 500 MHz High Voltage Differential Probe Add to Cart


TDP1000 Tektronix TDP1000 1 GHz High Voltage Differential Probe Add to Cart


TDP1500 Tektronix TDP1500 1.5 GHz Low Voltage Differential Probe Add to Cart


TDP3500 Tektronix TDP3500 3.5 GHz Low Voltage Differential Probe Add to Cart


THDP0200 Tektronix THDP0200 Differential Probe; 200 Mhz Tekvpi Differential High Voltage Probe Add to Cart


THDP0100 Tektronix THDP0100 100 MHz, 100X/1000X High Voltage Differential Probe for Oscilloscopes Add to Cart


TMDP0200 Tektronix TMDP0200 Differential Probe; 200 Mhz Tekvpi Differential Medium Voltage Probe; TMDP0200 Add to Cart


TPP0500B Tektronix TPP0500B 500 MHz, 10X Passive Voltage Probe Add to Cart


TPP0502 Tektronix TPP0502 500 MHz, 2x Passive Voltage Probe Add to Cart


TPP0850 Tektronix TPP0850 800 MHz, 50x Single-Ended High Voltage Probe Add to Cart


TPP1000 Tektronix TPP1000 1 GHz, 10X Passive Voltage Probe Add to Cart


Rackmount Kits
Model Description Buy Now Price
RMD5000 Tektronix RMD5000 Rackmount Kit for DPO/MSO4000B & DPO/MSO5000 Series Add to Cart


  • Sold separately from main unit(s)
  • Intended for pre-owned/existing main unit(s)
  • Can be purchased and installed at any time
  • Installations vary; please call for details
MDO4054CGSA MDO4AFG Tektronix MDO4054CGSA MDO4AFG *US Gov Edit* 1-Time Arbitrary Function Generator Upgrade for MDO4054C For GSA Price, Please Call
MDO4054CGSA MDO4MSO Tektronix MDO4054CGSA MDO4MSO *US Gov Edit* 1-Time Upgrade Adds 16 Digital Channels to MDO4054C For GSA Price, Please Call
MDO4054CGSA MDO4SEC Tektronix MDO4054CGSA MDO4SEC *US Gov Edition* 1-Time Spectrum Analyzer Upgrade for MDO4054C For GSA Price, Please Call
MDO4054CGSA SA3 Tektronix MDO4054CGSA SA3 *US Gov Edit* 1-Time Upgrade Adds Integrated Spectrum Analyzer to MDO4054C For GSA Price, Please Call
MDO4054CGSA SA6 Tektronix MDO4054CGSA SA6 *US Gov Edit* 1-Time Upgrade Adds Integrated Spectrum Analyzer to MDO4054C For GSA Price, Please Call
Calibration & Data Reports
Model Description Price
MDO4054CGSA C3 Tektronix MDO4054CGSA C3 *US Gov Edition* 3-Yr Calibration Service for MDO4054C For GSA Price, Please Call
MDO4054CGSA C5 Tektronix MDO4054CGSA C5 *US Gov Edition* 5-Yr Calibration Service for MDO4054C For GSA Price, Please Call
MDO4054CGSA D1 Tektronix MDO4054CGSA D1 *US Gov Edition* Calibration Data Report for MDO4054C For GSA Price, Please Call
MDO4054CGSA D3 Tektronix MDO4054CGSA D3 *US Gov Edition* 3-Yr Calibration Data Report for MDO4054C For GSA Price, Please Call
MDO4054CGSA D5 Tektronix MDO4054CGSA D5 *US Gov Edition* 5-Yr Calibration Data Report for MDO4054C For GSA Price, Please Call
Protection Plans
Model Description Price
MDO4054CGSA T3 Tektronix MDO4054CGSA T3 *US Gov Edition* 3-Yr Total Protection Plan for MDO4054C For GSA Price, Please Call
MDO4054CGSA T5 Tektronix MDO4054CGSA T5 *US Gov Edition* 5-Yr Total Protection Plan for MDO4054C For GSA Price, Please Call
Repair Services
Model Description Price
MDO4054CGSA-R5DW Tektronix MDO4054CGSA-R5DW *US Gov Edition* 5-Yr Repair Service Coverage for MDO4054C For GSA Price, Please Call
Model Description Price
MDO4054CGSA R5 Tektronix MDO4054CGSA R5 *US Gov Edit* 5-Yr Standard Warranty Extension for MDO4054C For GSA Price, Please Call
Data Sheet: PDF Document Icon (2.82 MB)
Manual: PDF Document Icon (8.89 MB)
↑ Back to Top