PDS Series

Portable Colour Digital Storage Oscilloscope

User Manual

- PDS5022S
- PDS6042S
- PDS6062S
- PDS6062T
- PDS7062T
- PDS7102T

WWW.OWON.COM.CN
Mar. 2011 edition

Copy Right in this Manual © Lilliput Company. All rights have been reserved.
The Lilliput’s products are under the protection of the patent rights in America and other countries,
including ones which have already obtained the patent rights and those which are applying for. The
information in this manual will replace all that in the materials published originally.
The information in this manual was correct at the time of printing. However, OWON will continue to
improve products and reserves the rights to changes specification at any time without notice.

OWON is the registered trademark of the Lilliput Company.

Xiamen Lilliput Technology Co., Ltd.: the 5th floor, B Area, Chuangxin Mansion, Software Park,
ZhenZhuWan, Huandaod RD, Xiamen, Fujian, China
Tel: +86-592-2575666 Fax: +86-592-2575669
Web: www.owon.com.cn Mail: sales@owon.com.cn

Fujian Lilliput Optoelectronics Technology Co., Ltd.: The mansion of optoelectronics hengsan road,
Lantian industrial zone, Zhangzhou, Fujian, China
Tel: +86-596-2130430 Fax: +86-596-2109272
Web: www.owonchina.com Mail: service@owonchina.com
General Warranty

The Lilliput warrants that the product will be free from defects in materials and workmanship for a period of three years from the date of purchase of the product by the original purchaser from the Lilliput company. And the warranty period of accessories such as probe, battery, adapter is one year. This warranty only applies to the original purchaser and is not transferable to the third party. If the product proves defective during the warranty period, Lilliput either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Lilliput for warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Lilliput.

In order to obtain service under this warranty, Customer must notify Lilliput of the defect before the expiration of the warranty period. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Lilliput, and with a copy of customer proof of purchase.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Lilliput shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Lilliput representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Lilliput supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

Please contact the nearest Lilliput’s Sales and Service Offices for services or a complete copy of the warranty statement.

Excepting the after-sales services provided in this summary or the applicable warranty statements, Lilliput will not offer any guarantee for maintenance definitely declared or hinted, including but not limited to the implied guarantee for marketability and special-purpose acceptability. Lilliput should not take any responsibilities for any indirect, special or consequent damages.
Table of Contents

General Safety Information .. 4
Safety Notice .. 5
Safety Symbols ... 5
General features of the PDS Serial Oscilloscope ... 7
Junior User's Guidebook... 8
 Introduction to the Front Panel and the User's Interface of the PDS series Oscilloscope 9
 Check the Package Contents .. 13
 To perform the Function Inspection .. 14
 To perform the Probe Compensation .. 16
 To set the Probe Attenuation Coefficient ... 17
 To use the Probe Safely ... 18
 To perform Self-calibration ... 19

Introduction to the Vertical System .. 20
Introduction to the Horizontal System .. 21
Introduction to the Trigger System .. 22

Advanced User's Guidebook .. 23
 To set the Vertical System ... 24
 Perform Mathematical Manipulation Function ... 30
 Using FFT function ... 31
 Application of VERTICAL POSITION and VOLTS/DIV Knobs 36
 To set the Horizontal system .. 37
 To set the Trigger System ... 39

Trigger Control .. 40
 The trigger control of PDS5022S、PDS6042S、PDS6062S、PDS6062T 40
 The trigger control of PDS7062T、PDS7102T .. 45
To operate the Function Menu ... 52
To perform Sampling Setup... 52
To set the Display System... 54
To Save and Recall a Waveform.. 58
To perform the Auxiliary System Function Setting.......................... 60
To perform the Automatic Measurement ... 62
To perform the Cursor Measurement... 65
To use Autoscale.. 68
To use Executive Buttons ... 71

Quick Start Guide ... 72
Example 1: Measurement of Simple Signals 72
Example 2: Gain of the Amplifier in the Metering Circuit............. 73
Example 3: Capture the Single Signal .. 74
Example 4: Analyze the Details of a Signal 77
Example 5: Application of X-Y Function ... 79
Example 6: Video Signal Trigger.. 80

Troubleshooting... 83
Appendix A: Technical Specifications ... 84
Appendix B: Package Contents... 90
Appendix C: Maintenance, Cleaning and Repairing..................... 90
Appendix D: Battery Using Guide .. 91
General Safety Information

Before any operations, please read the following safety precautions to avoid any possible bodily injury and prevent this product or any other products connected from damage. In order to avoid any contingent danger, this product is only used within the range specified.

Only the qualified technicians can implement the maintenance.

Prevent the Fire or Bodily Injury.

Connect the probe correctly. The grounding end of the probe corresponds to the grounding phase. Please don't connect the grounding end to the positive phase.

Use the proper power line. Only use the power cord specially provided for this product or that has been approved to be used in this user state.

Connect or Disconnect Correctly. When the probe or testing wire is connected to the power lead, please do not connect and disconnect the probe or testing wire at random.

Product Grounded. This product is grounded through the power lead grounding conductor. In order to prevent any electric shocking, the grounding conductor must be connected to the ground. It requires guarantee that this product has been already grounded correctly before any connection with its input or output terminal.

When powered by AC power, it is not allowed to measure AC power source directly, because the testing ground and power cord ground conductor are connected together, otherwise, it will cause short circuit.

When powered by battery, the product must ground connection. To avoid electric shock, there must be a ground wire connect between ground and the ground port (on the back of product panel).

Pay attention to the nominal values of all terminals. In order to prevent any fire or electric shock risks, please pay attention to all the nominal values and marks of this product. Before implement any connections for this product, please read the user's manual of this product to understand the information about the rated values further.

Do not make any operations without the instrument cover installed. If the cover or panel has already been removed, please don't operate this product.

Use the proper fuse. Only the fuse complying with the specified type and nominal value for this product can be used.

Avoid touching any exposed circuit. When the product is on power, please don't touch the uncovered contacts and parts.

Please don't make any operations while there is an uncertain fault emerged. If suspecting damage to this product, please contact the qualified maintenance personnel for check.

Keep a good ventilation condition. Please consult the detailed installation instruction in the user's manual so that this product can be erected correctly, keeping it under a good ventilation condition.

Please do not make any operations in a moist environment.
Please do not make any operates in an explosive environment. Keep the products surface clean and dry.

Safety Notice

The following notice may appear on the products:

⚠️ **Warning.** A warning statement indicates the conditions and actions which may endanger the life safety.

⚠️ **Note.** A note statement indicates the conditions and actions which may cause damage to this product or other property.

Danger: It indicates that there may be an immediate injury to you when you encounter this mark.

Warning: It indicates that there may not be an immediate injury to you when you encounter this mark.

Note: It indicates that there may be damage to this product or other property.

Safety Symbols

The following symbol may appear on the products:

- ⚡ High Voltage
- ⚠️ Please Consult the Manual
- 🟣 Protective Ground End
- 🟡 Earth Chassis Ground
- 🟢 Earth Ground
To avoid body damage and prevent product and connected equipment damage. This product can only be used in the specified applications. Carefully read the following safety information before using the test tool.

⚠️ **Warning:**

To avoid fire or electrical shock if an oscilloscope input is connected to more than 42V peak (30VRms) or on circuits of more than 4800VA, please take note of below items:

- Only use accessory insulated voltage probes or test lead.
- Before using DSO, please inspect oscilloscope accessories such as probe to see if they are in good condition, if not, please replace them.
- Remove probes, test leads and other accessories that are not necessary use.
- Remove USB cable which connects oscilloscope and computer.
- Please pay special attention when the probe is set as 1:1 and do not apply input voltages above the rating of the instrument because the probe tip voltage will directly transmit to the oscilloscope.
- Do not use exposed metal BNC or banana plug connectors.
- Do not insert metal objects into connectors.
General features of the PDS Serial Oscilloscope

<table>
<thead>
<tr>
<th>Model</th>
<th>Bandwidth</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDS5022S</td>
<td>25MHz</td>
<td>100MS/s</td>
</tr>
<tr>
<td>PDS6042S</td>
<td>40MHz</td>
<td>250MS/s</td>
</tr>
<tr>
<td>PDS6062S</td>
<td>60MHz</td>
<td>250MS/s</td>
</tr>
<tr>
<td>PDS6062T</td>
<td>60MHz</td>
<td>250MS/s</td>
</tr>
<tr>
<td>PDS7062T</td>
<td>60MHz</td>
<td>500MS/s</td>
</tr>
<tr>
<td>PDS7102T</td>
<td>100MHz</td>
<td>500MS/s</td>
</tr>
</tbody>
</table>

- Record length of 5,000 points for each channel;
- Reading-out with the cursor;
- Twenty automatic measurement functions;
- Autoscale function;
- Color liquid crystal display of high resolution and high contrast;
- Storage and recall waveforms;
- Automatic setting function provided capable of fast setting;
- Multiple-waveform calculation function;
- Built-in FFT function;
- Perform detecting the average and peak values of the waveform;
- Digital real-time oscilloscope;
- Edge, video and Alternating triggering function;
- RS232 or USB communication ports;
- Different continuous displaying time;
- Multiple language User interface.
Junior User's Guidebook

This chapter deals with the following topics mainly:

- Introduction to the front panel and the user’s interface of the PDS series oscilloscope
- To perform the general inspection
- To perform the function inspection
- To perform the probe compensation
- To set the probe attenuation coefficient
- To use the probe safely
- To perform an self-calibration
- Introduction to the vertical system
- Introduction to the horizontal system
- Introduction to the trigger system
Introduction to the Front Panel and the User's Interface of the PDS series Oscilloscope

When you get a new-type oscilloscope, you should get acquainted with its front panel at first and the PDS series digital storage oscilloscope is no exception. This chapter makes a simple description of the operation and function of the front panel of the PDS series oscilloscope, enabling you to be familiar with the use of the PDS series oscilloscope in the shortest time. The PDS series oscilloscope offers a simple front panel with distinct functions to users for their completing some basic operations, in which the knobs and function pushbuttons are included. The knobs have the functions similar to other oscilloscopes. The 5 buttons in the column on the right side of the display screen are menu selection buttons (defined as F1 to F5 from top to bottom respectively), through which, you can set the different options for the current menu. The other pushbuttons are function buttons, through which, you can enter different function menus or obtain a specific function application directly.
Fig. 1 The Front Panel of a PDS series Oscilloscope

Fig. 2 Explanatory Drawing for Operations of the PDS series Oscilloscope
1. The Trigger State indicates the following information:

 Auto: The oscilloscope is under the Automatic mode and is collecting the waveform under the non-trigger state.

 Trig’d: The oscilloscope has already detected a trigger signal and is collecting the after-triggering information.

 Ready: All pre-triggered data have been captured and the oscilloscope has been already ready for accepting a trigger.

 Scan: The oscilloscope captures and displays the waveform data continuously in the scan mode.

 Stop: The oscilloscope has already stopped the waveform data acquisition.

2. Waveform Viewing Area.

3. The purple pointer indicates the horizontal trigger position, which can be adjusted by the horizontal position control knob.

4. The reading shows the time deviation between the horizontal trigger position and the screen centre line, which equals 0 in the screen center.

5. This reading shows the time deviation between the horizontal trigger position and the window centre line, which is regarded as 0 in the window center.

Fig.3 Illustrative Drawing of Display Interfaces
6. It indicates the current function menu.
7. It indicates the operation options for the current function menu, which changes with the function menus.
8. The purple pointer shows the trigger level position.
9. The reading shows the trigger level value.
10. The reading shows the trigger source.
11. It shows the selected trigger type:
 - Rising edge triggering
 - Falling edge triggering
 - Video line synchronous triggering
 - Video field synchronous triggering
12. The reading shows the window time base set value.
13. The reading shows the main time base set value.
14. The two yellow dotted lines indicate the size of the viewing expanded window.
15. The icon shows the coupling mode of the CH2 channel:
 - “—” indicates the direct current coupling
 - “～” indicates the AC coupling
 - “=GND” indicates GND coupling.
16. The reading shows the vertical scale factor (the Voltage Division) of the CH2 channel.
17. The icon indicates the coupling mode of the CH1 channel:
 - The icon "—" indicates the direct current coupling
 - The icon "～" indicates the AC coupling
 - The icon "=GND" indicates GND coupling.
18. The reading indicates the vertical scale factor (the Voltage Division) of the CH1 channel.
19. The information shows the zero point positions of CH1 or CH2 channel.
20. The yellow pointer shows the grounding datum point (zero point position) of the waveform of the CH2 channel. If the pointer is not displayed, it shows that this channel is not opened.
21. The red pointer indicates the grounding datum point (zero point position) of the waveform of the CH1 channel. If the pointer is not displayed, it shows that the channel is not opened.
22. The positions of two purple dotted line cursors measurements.

23. The reading shows the frequency of the two channels. It is a 6 digits cymometer. Its measurement range of frequency is 2Hz to full bandwidth. When the triggering mode is edge triggering, it is a one channel cymometer and it can only measure the frequency of the triggering channel. When the triggering mode is alternating triggering, it is a two channel cymometer and it can measure the frequency of two channels.

Note: Only the model of PDS7062T and PDS7102T support the cymometer function.

Check the Package Contents

After you get a new PDS series oscilloscope, it is recommended that you should make a check on the instrument according to the following steps:

1. **Check whether there is any damage caused by transportation.**
 If it is found that the packaging carton or the foamed plastic protection cushion has suffered serious damage, do not throw it away first till the complete device and its accessories succeed in the electrical and mechanical property tests.

2. **Check the Accessories**
 The supplied accessories have been already described in the Appendix B “Accessories” of this Manual. You can check whether there is any loss of accessories with reference to this description. If it is found that there is any accessory lost or damaged, please get in touch with the distributor of LILLIPUT responsible for this service or the LILLIPUT’s local offices.

3. **Check the Complete Instrument**
 If it is found that there is damage to the appearance of the instrument, or the instrument can not work normally, or fails in the performance test, please get in touch with the LILLIPUT’s distributor responsible for this business or the LILLIPUT’s local offices. If there is damage to the instrument caused by the transportation, please keep the package. With the transportation department or the LILLIPUT’s distributor responsible for this business informed about it, a repairing or replacement of the instrument will be arranged by the LILLIPUT.
To perform the Function Inspection

Make a fast function check to verify the normal operation of the instrument, according to the following steps:

1. **Connect the Instrument to the Power and Push down the Power Switch Button.**
 The instrument carries out all self-check items and shows the prompt “Press any Key Enter the Operating Mode”. Press the “UTILITY” button to get access to the “FUNCTION” menu and push down F2 the menu selection button to call out the function “Recall Factory”. The default attenuation coefficient set value of the probe in the menu is 10X, shown as Fig.4.

![Fig.4 Power on the Instrument](image)

2. **Set the Switch in the Oscilloscope Probe as 10X and Connect the Oscilloscope with CH1 Channel.**
 Align the slot in the probe with the plug in the CH1 connector BNC, and then tighten the probe with rotating it to the right side.
 Connect the probe tip and the ground clamp to the connector of the probe compensator, shown as Fig.5.
3. **Press the AUTO SET Button.**

The square wave of 1 KHz frequency and 5V peak-peak value will be displayed in several seconds (see Fig.6).

![Auto set](Fig.6.jpg)

Check CH2 by repeating Step 2 and Step 3.
To perform the Probe Compensation

When connect the probe with any input channel for the first time, make this adjustment to match the probe with the input channel. The probe which is not compensated or presents a compensation deviation will result in the measuring error or mistake. For adjusting the probe compensation, please carry out the following steps:

1. Set the attenuation coefficient of the probe in the menu as 10X and that of the switch in the probe as 10X, and connect the oscilloscope probe with the CH1 channel. If a probe hook tip is used, ensure that it keeps in close touch with the probe. Connect the probe tip with the signal connector of the probe compensator and connect the reference wire clamp with the ground wire connector of the probe connector, and then press the button AUTOSET (see Fig.5).

2. Check the displayed waveforms and regulate the probe till a correct compensation is achieved (see Fig.7 and Fig.8).

![Fig.7 Displayed Waveforms of the Probe Compensation](image)

3. Repeat the steps mentioned if necessary.

![Fig.8 Adjust Probe](image)
To set the Probe Attenuation Coefficient

The probe has several attenuation coefficients, which will influence the vertical scale factor of the oscilloscope.

If it is required to change (check) the set value of the probe attenuation coefficient, press the function menu button of the channels used, then push down the selection button corresponding to the probe till the correct set value is shown.

This setting will be valid all the time before it is changed again.

⚠️ Note: The attenuation coefficient of the probe in the menu is preset to 10X when the oscilloscope is delivered from the factory.

Make sure that the set value of the attenuation switch in the probe is the same as the menu selection of the probe in the oscilloscope.

The set values of the probe switch are 1X and 10X (see Fig.9).

⚠️ Note: When the attenuation switch is set to 1X, the probe will limit the bandwidth of the oscilloscope in 5MHz. If it is needed to use the whole bandwidth of the oscilloscope, the switch must be set to 10X.
To use the Probe Safely

The safety guard ring around the probe body protects your finger against the electric shock, shown as Fig.10.

⚠️ **Warning:** In order to avoid suffering from the electric shock, please keep your finger behind the safety guard ring of the probe body during the operation.

In order to protect you from suffering from the electric shock during your using the probe, do not touch the metal part of the probe tip when the probe is connected to the power supply.

Before making any measurements, please connect the probe to the instrument and connect the ground terminal to the earth.
To perform Self-calibration

The self-calibration application can make the oscilloscope reach the optimum condition rapidly to obtain the most accurate measurement value. You can carry out this application program at any time, but when the range of variation of the ambient temperature is up to or over 5°C, this program must be executed.

For the performing of the self-calibration, all probes or wires should be disconnected with the input connector first. Then, press the “UTILITY” button to call out the FUNCTION menu; push down the F3 menu selection button to choose the option “Perform Self-Calibration”; finally, run the program after confirming that everything is ready now.
Introduction to the Vertical System

Shown as Fig.11, there are a series of buttons and knobs in VERTICAL CONTROLS. The following practices will gradually direct you to be familiar with the using of the vertical setting.

![Fig.11 Vertical Control Zone](image)

1. Use the button “VERTICAL POSITION” knob to show the signal in the center of the waveform window. The “VERTICAL POSITION” knob functions the regulating of the vertical display position of the signal. Thus, when the “VERTICAL POSITION” knob is rotated, the pointer of the earth datum point of the channel is directed to move up and down following the waveform.

Measuring Skill

If the channel is under the DC coupling mode, you can rapidly measure the DC component of the signal through the observation of the difference between the waveform and the signal ground.

If the channel is under the AC mode, the DC component will be removed by filtration. This mode helps you display the AC component of the signal with a higher sensitivity.

2. Change the Vertical Setting and Observe the Consequent State Information Change.

With the information displayed in the status bar at the bottom of the waveform window, you can determine any changes in the channel vertical scale factor.

- Rotate the vertical “VOLTS/DIV” knob and change the “Vertical Scale Factor (Voltage Division)”, it can be found that the scale factor of the channel corresponding to the status bar has been changed accordingly.

- Press buttons of “CH1 MENU”, “CH2 MENU” and “MATH MENU”, the operation menu, symbols, wave forms and scale factor status information of the corresponding channel will be displayed in the screen.
Introduction to the Horizontal System

Shown as Fig.12, there are a button and two knobs in the “HORIZONTAL CONTROLS”. The following practices will gradually direct you to be familiar with the setting of horizontal time base.

1. Use the horizontal “SEC/DIV” knob to change the horizontal time base setting and observe the consequent status information change. Rotate the horizontal “SEC/DIV” knob to change the horizontal time base, and it can be found that the “Horizontal Time Base” display in the status bar changes accordingly. The horizontal scanning speed steps from 5ns up to 100s according to the stepping mode of

 1-2.5-5---- PDS5022S;
 1—2—5 ---- PDS6042S, PDS6062S, PDS6062T, PDS7062T, PDS7102T.

2. Use the “HORIZONTAL POSITION” knob to adjust the horizontal position of the signal in the waveform window. The “HORIZONTAL POSITION” knob is used to control the triggering displacement of the signal or for other special applications. If it is applied to triggering the displacement, it can be observed that the waveform moves horizontally with the knob when you rotate the “Horizontal Position” knob.

3. With the “HORIZONTAL MENU” button pushed down, you can set and initiate the Window Expansion.

Fig.12 Horizontal Control Zone
Introduction to the Trigger System

Shown as Fig.13, there are a knob and four buttons in the “TRIGGER CONTROLS”. The following practices will direct you to be familiar with the setting of the trigger system gradually.

1. Press the “TRIG MENU” button and call out the trigger menu. With the operations of the 5 menu selection buttons, the trigger setting can be changed.

2. Use the “LEVEL” knob to change the trigger level setting. With the rotation of the “LEVEL” knob, it can found that the trigger indicator in the screen will move up and down with the rotation of the knob. With the movement of the trigger indicator, it can be observed that the trigger level value displayed in the screen changes.

3. Press the button “SET TO 50%” to set the trigger level as the vertical mid point values of the amplitude of the trigger signal.

4. Press the “FORCE TRIG” button to force a trigger signal, which is mainly applied to the “Normal" and "Single" trigger modes.

5. The “SET TO ZERO” button is used to reset the trigger horizontal position.
Advanced User's Guidebook

Up till now, you have already been familiar with the initial operations of “VERTICAL CONTROLS”, “HORIZONTAL CONTROLS” and “TRIGGER CONTROLS”, and the functions of the function areas, buttons and knobs in the front panel of the PDS series oscilloscope. Based the introduction of the previous Chapter, the user should have an intimate knowledge of the determination of the change of the oscilloscope setting through observing the status bar. If you have not been familiar with the above-mentioned operations and methods yet, we advise you to read the section of “Chapter One Junior Users' Guidebook”.

This chapter will deal with the following topics mainly:

- To set the Vertical System
- To set the Horizontal System
- To set the Trigger System
- To perform the Sampling Setup
- To set the Display System
- To Save and Recall a Wave Form
- To perform the Auxiliary System Function Setting
- To perform the Automatic Measurement
- To perform the Cursor Measurement
- To use Autoscale function
- To use Executive Buttons

It is recommended that you read this chapter carefully to get acquainted the various measurement functions and other operation methods of the PDS series oscilloscope.
To set the Vertical System

The VERTICAL CONTROLS includes three menu buttons such as CH1 MENU, CH2 MENU and MATH MENU, and four knobs such as VERTICA POSITION, VOLTS/DIV (one group for each of the two channels).

Setting of CH1 and CH2

Every channel has an independent vertical menu and each item is set respectively based on the channel.

With the “CH1 MENU” or “CH2 MENU” menu button pushed down, the system shows the operation menu of the corresponding channel (see Fig.14).

![Fig.14 Channel Setting Menu](image-url)
The description of the Channel Menu is shown as the following list: following form:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupling</td>
<td>AC</td>
<td>Block the DC component in the input signal.</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>Unblock the AC and DC components in the input signal.</td>
</tr>
<tr>
<td></td>
<td>Ground</td>
<td>Input signal is interrupted.</td>
</tr>
<tr>
<td>Channel</td>
<td>OFF</td>
<td>Close the measurement channel.</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Open the measuring channel.</td>
</tr>
<tr>
<td>Probe</td>
<td>1X</td>
<td>Choose one according to the probe attenuation factor to make the vertical scale reading accurate.</td>
</tr>
<tr>
<td></td>
<td>10X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000X</td>
<td></td>
</tr>
<tr>
<td>Inverted</td>
<td>OFF</td>
<td>The wave form is displayed normally.</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Initiate the wave form inverted function.</td>
</tr>
</tbody>
</table>

1. Setting Channel Coupling

Taking the Channel 1 for example, the measured signal is a square wave signal containing the direct current bias. The operation steps are shown as below:

(1). Press the **CH1 MENU** button and call out the **CH1 SETUP** menu.

(2). Press the **F1** menu selection button and select the Coupling item as “AC” to set the channel coupling as ac mode, under which the direct current component in the signal will be blocked.

Then, press the **F1** menu selection button again and select the Coupling item as “DC”, setting the channel coupling as DC mode, under which both dc and ac components in the signal will be unblocked.

The waveforms are shown as Fig.15 and Fig.16.
2. Setting the Channel “ON/OFF”

Taking the Channel 1 for example, the operation steps are shown as below:

(1). Press the **CH1 MENU** button and call out the **CH1 SETUP** menu.

(2). Press the **F2** menu selection button and select the Channel as **OFF**, with Channel 1 switched off.
(3). Press **F2** menu selection button again, select the channel as **ON**, with Channel 1 is switched on.

3. **Regulate the Attenuation Ratio of the Probe**

In order to match the attenuation coefficient of the probe, it is required to adjust the attenuation ratio coefficient of the probe through the operating menu of the Channel accordingly. If the attenuation coefficient of the probe is 1:1, that of the oscilloscope input channel should also be set to 1X to avoid any errors presented in the displayed scale factor information and the measured data.

Take the Channel 1 as an example, the attenuation coefficient of the probe is 1:1, the operation steps is shown as follows:

1. Press the **CH1 MENU** button, access CH1 SETUP menu.
2. Press the **F3** menu selection button and select 1X for the probe.

The Fig.17 illustrates the setting and the vertical scale factor when the probe of the attenuation coefficient of 1:1 is used.

Fig.17 Regulation of the Attenuation Ratio of the Probe

A List of the Attenuation Coefficients of Probes and the Corresponding Menu Settings.

<table>
<thead>
<tr>
<th>Attenuation Coefficient of the Probe</th>
<th>Corresponding Menu Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1X</td>
</tr>
<tr>
<td>10:1</td>
<td>10X</td>
</tr>
<tr>
<td>100:1</td>
<td>100X</td>
</tr>
<tr>
<td>1000:1</td>
<td>1000X</td>
</tr>
</tbody>
</table>
4. Setting of Wave Form Inverted

Wave form inverted: the displayed signal is turned 180 degrees against the phase of the earth potential.

Taking the Channel 1 for example, the operation steps are shown as follows:

(1). Press the CH1 MENU button and get access to the CH1 SETUP menu.

(2). Press the F4 menu selection button and select ON in the Inverted. The wave form inverted function is initiated.

(3). Press the F4 menu selection button again and select OFF for Inverted item. The function of wave form inverted is closed off.

For the screen display, see Fig.18 and Fig.19.

Fig.18 Wave Form not inverted
Fig. 19 Wave Form Inverted
Perform Mathematical Manipulation Function

The Mathematical Manipulation function is used to show the results of the additive and subtraction operations between Channel 1 and Channel 2, and the FFT operation of CH1 or CH2.

Taking the additive operation between Channel 1 and Channels 2 for example, the operation steps are as follows:

1. Press the MATH MENU button and call out the WAVE MATH menu.
2. Press the F3 menu selection button and choose CH1+CH2. The green calculated wave form M is displayed in the screen; press the F3 menu selection button again, the wave form M is closed off (see Fig.20).

![Wave Form resulted from CH1 +CH2 Mathematical Manipulation](image)

The corresponding FCL (Functional Capabilities List) of the Wave Form Calculation

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1-CH2</td>
<td>Subtract the Channel 2 wave form from the Channel 1 wave form.</td>
</tr>
<tr>
<td>CH2-CH1</td>
<td>Subtract the Channel 1 wave form from the Channel 2 wave form.</td>
</tr>
<tr>
<td>CH1+CH2</td>
<td>Add the Channel 1 wave form to the Channel 2.</td>
</tr>
<tr>
<td>FFT</td>
<td>Waveform of Corresponding FFT operation</td>
</tr>
</tbody>
</table>
Using FFT function

An FFT breaks down signals into component frequencies, which the oscilloscope uses to display a graph of the frequency domain of a signal, as opposed to the oscilloscope’s standard time domain graph. You can match these frequencies with known system frequencies, such as system clocks, oscillators, or power supplies.

FFT in this oscilloscope can transform 2048 points of the time-domain signal into its frequency components and the final frequency contains 1024 points ranging from 0Hz to Nyquist frequency.

The following table describes the FFT menu:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>ON</td>
<td>Turn on FFT function</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Turn off FFT function</td>
</tr>
<tr>
<td>Source</td>
<td>CH1</td>
<td>Select CH1 as FFT source</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>Select CH2 as FFT source</td>
</tr>
<tr>
<td>Window</td>
<td>Rectangle</td>
<td>Select window for FFT.</td>
</tr>
<tr>
<td></td>
<td>Blackman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hanning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hamming</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>dB</td>
<td>Select dB for Format</td>
</tr>
<tr>
<td></td>
<td>Vrms</td>
<td>Select Vrms for Format</td>
</tr>
<tr>
<td>Zoom</td>
<td>*1</td>
<td>Set multiple *1</td>
</tr>
<tr>
<td></td>
<td>*2</td>
<td>Set multiple *2</td>
</tr>
<tr>
<td></td>
<td>*5</td>
<td>Set multiple *5</td>
</tr>
<tr>
<td></td>
<td>*10</td>
<td>Set multiple *10</td>
</tr>
</tbody>
</table>

Taking the FFT operation for example, the operation steps are as follows:
1. Press the **MATH MENU** button and call out the WAVE MATH menu.
2. Press the **F4** selection button to choose FFT.
3. Press F1 to turn on/off FFT after entering FFT menu, and please note that FFT is prohibited in Window setting mode. The green waveform F is shown in the screen after calculation.
4. Press **F2** selection button to switch over source channel CH1 and CH2.

5. Press **F3** button to select WINDOW, including Rectangle、Hamming、Hanning and Blackman.

6. Press **F4** to choose the Format as dB or Vrms.

7. Press **F5** to zoom in or out the wave of the multiple including *1, *2, *5, *10.

8. Adjust the “Horizontal” knob in horizontal control zone to move the waveform and the shown frequency of M Pos is the exact frequency of the cursor point in the middle of spectrum.

9. Press **F1** to choose off to Turn off FFT and then press **math menu** button to go back to the second page of wave math.

Selecting an FFT Window

The FFT feature provides four windows. Each one is a trade-off between frequency resolution and magnitude accuracy. What you want to measure and your source signal characteristics help determine which window to use. Use the following guidelines to select the best window.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>This is the best type of window for resolving frequencies that are very close to the same value but worst for accurately measuring the amplitude of those frequencies. It is the best type for measuring the frequency spectrum of nonrepetitive signals and measuring frequency components near DC. Use rectangle for measuring transients or bursts where the signal level before and after the event are nearly equal. Also, use this window for equal-amplitude sine waves with frequencies that are very close and for broadband random noise with a relatively slow varying spectrum.</td>
<td></td>
</tr>
<tr>
<td>Hamming</td>
<td>This is a very good window for resolving frequencies that are very close to the same value with somewhat improved amplitude accuracy over the rectangle window. It has a slightly better frequency resolution than the Hanning. Use Hamming for measuring sine, periodic, and narrow band random noise. This window works on transients or bursts where the signal levels before and after the event are significantly different.</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Description</td>
<td>Diagram</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Hanning</td>
<td>This is a very good window for measuring amplitude accuracy but less so for resolving frequencies. Use Hanning for measuring sine, periodic and narrow band random noise. This window works on transients or bursts where the signal levels before and after the event are significantly different.</td>
<td></td>
</tr>
<tr>
<td>Blackman</td>
<td>This is the best window for measuring the amplitude of frequencies but worst at resolving frequencies. Use Blackman-Harris for measuring predominantly single frequency waveforms to look for higher order harmonics.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 21, 22, 23, 24 show four kinds of window function referring to sine wave of 1KHz.

![Blackman window](image_url)

Fig. 21 Blackman window
Fig. 22 Hamming window

Fig. 23 Rectangle window
Quick Tips

- If desired, use the zoom feature to magnify the FFT waveform.
- Use the default dBV RMS scale to see a detailed view of multiple frequencies, even if they have very different amplitudes. Use the linear RMS scale to see an overall view of how all frequencies compare to each other.
- Signals that have a DC component or offset can cause incorrect FFT waveform component magnitude values. To minimize the DC component, choose AC Coupling on the source signal.
- To reduce random noise and aliased components in repetitive or single-shot events, set the oscilloscope acquisition mode to average.

Term interpretation

Nyquist frequency: The highest frequency that any Real Time Digital Oscilloscope can measure is exactly half of the sampling rate under the condition of no mistakes, which is called Nyquist frequency. If under-sampling occurs when the frequency sampled is higher than Nyquist frequency, “False Wave” phenomenon will appear. So pay more attention to the relation between the frequency being sampled and measured.

NOTE:
In FFT mode, the following settings are prohibited:
1) Window set;
2) change source channel (in CH1 Setup or CH2 Setup menu);
3) XY Format in DISPLAY SET;
4) “SET 50%” (the triggering level at the vertical point of signal amplitude) in Trigger setting;
5) Autoscale.

Application of VERTICAL POSITION and VOLTS/DIV Knobs

1. The VERTICAL POSITION knob is used to adjust the vertical positions of the wave forms of all Channels (including those resulted from the mathematical operation).
 The analytic resolution of this control knob changes with the vertical division.

2. The VOLTS/DIV knob is used to regulate the vertical resolution of the wave forms of all channels (including those obtained from the mathematical manipulation), which can determine the sensitivity of the vertical division with the sequence of 1—2—5. The vertical sensitivity goes up when the knob is rotated clockwise and goes down when the knob is rotated anticlockwise.

3. When the vertical position of the channel wave form is adjusted, the screen shows the information concerning the vertical position at the lower left corner (see Fig. 25).

![Fig. 25 Information about Vertical Position](image)
To set the Horizontal system

The **HORIZONTAL CONTROLS** includes the **HORIZONTAL NENU button** and such knobs as **HORIZONTAL POSITION** and **SEC/DIV**.

1. **HORIZONTAL POSITION** knob: this knob is used to adjust the horizontal positions of all channels (include those obtained from the mathematical manipulation), the analytic resolution of which changes with the time base.

2. **SEC/DIV** knob: it is used to set the horizontal scale factor for setting the main time base or the window.

3. **HORIZONTAL NENU button**: with this button pushed down, the screen shows the operating menu (see Fig.26).

![Time Base Mode Menu](image)

Fig.26 Time Base Mode Menu

The description of the **Horizontal Menu** is as follows:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Time Base</td>
<td></td>
<td>The setting of the horizontal main time base is used to display the wave form.</td>
</tr>
<tr>
<td>Set Window</td>
<td></td>
<td>A window area is defined by two cursors.</td>
</tr>
<tr>
<td>Zone Window</td>
<td></td>
<td>The defined window area for display is expanded to the full screen.</td>
</tr>
</tbody>
</table>

Main Time Base

Press the **F1** menu selection button and choose the **Main Time Base**. In this case, the **HORIZONTAL POSITION** and **SEC/DIV** knobs are used to adjust the main
window. The display in the screen is shown as Fig.27.

Fig.27 Main Time Base

Window Setting

Press the F2 menu selection button and choose **Set Window**. The screen will show a window area defined by two cursors. In this case, the **HORIZONTAL POSITION** and **SEC/DIV** knobs can be used to adjust the horizontal position and size of this window area (see Fig.28).

Fig.28 Set Window
Zoom in

Press the F3 menu selection button and choose Zone Window. As a result, the window area defined by two cursors will be expanded to the full screen size (see Fig.29).

![Zone Window](image)

Fig.29 Zone Window

To set the Trigger System

When the oscilloscope begins to collect the data and display the wave form depends on a trigger. Once it is set correctly, the trigger can transfer the unstable display into a meaningful wave form.

When beginning to collect data, the oscilloscope will collect adequate data to draw the wave form at the left side of the trigger point at first. It will continuously perform the data acquisition while waiting for the trigger condition. After a trigger is detected, the oscilloscope will continuously collect data enough to draw the wave form at the right side of the trigger point.

One knob and four function menu buttons are included in the trigger control zone.

TRIG LEVEL: Trigger the level control knob and set the signal voltage corresponding to the trigger point.

SET TO 50%: Set the trigger level as the vertical mid point value of the amplitude of the trigger signal.

FORCE TRIG: It is a force trigger button for the generation of a trigger signal,
which is mainly used in the “Normal” and “Single” triggering modes.

SET TO ZERO: Trigger the resetting of the horizontal position.

TRIG MENU: It is a trigger menu button. When it is pressed, an operation menu will be presented in the screen.

Trigger Control

The trigger control of PDS5022S、PDS6042S、PDS6062S、PDS6062T

Trigger Control: There are two trigger modes----Edge Trigger and Video Trigger. Each trigger mode uses different function menu. The switching between two modes can be implemented by pressing the **F1** menu selection button.

Edge Trigger: It happens when the trigger input passes through a given level along the set direction.

Video Trigger: Carry out the field or line video trigger of the standard video signal.

The Edge and Video Trigger menus are described respectively as below:

Edge Trigger

Under the Edge Trigger mode, a trigger happens in the trigger threshold value of the input signal edge. When the **Edge Trigger** is selected, a trigger will occur in the rising or falling edge of the input signal.

The **Edge Trigger Menu** is shown as Fig.30.
The **Edge Trigger Menu** is described as below:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>CH1</td>
<td>Set Channel 1 as the trigger signal of the source.</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>Set Channel 2 as the trigger signal of the source.</td>
</tr>
<tr>
<td></td>
<td>EXT</td>
<td>Set the external trigger channel as the trigger signal of the source.</td>
</tr>
<tr>
<td></td>
<td>EXT/5</td>
<td>Divide the External Trigger Source by 5 to expand the external trigger level range.</td>
</tr>
<tr>
<td>Slope</td>
<td>Rising</td>
<td>Set a trigger on the rising edge of the signal.</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>Set a trigger on the falling edge of the signal.</td>
</tr>
<tr>
<td>Mode</td>
<td>Auto</td>
<td>Collect the waveform even if there is not trigger condition is detected.</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Collect the waveform only when the trigger condition is fulfilled.</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>Collect a waveform when a trigger is detected, and then stop sampling.</td>
</tr>
<tr>
<td>Coupling</td>
<td>AC</td>
<td>Block the direct current component.</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>Unblock all components.</td>
</tr>
<tr>
<td></td>
<td>HF Rjc</td>
<td>Block the high-frequency signal and only unblock the low-frequency component.</td>
</tr>
<tr>
<td></td>
<td>LF Rjc</td>
<td>Block the low-frequency signal and only unblock the high-frequency component.</td>
</tr>
</tbody>
</table>

Holdoff: A time interval before the oscilloscope responds to next trigger signal. During this Holdoff period, the trigger system becomes “blind” to trigger signals. This function helps to view complex signals such as an AM waveform. Press Holdoff button to activate “TRIG LEVEL” knob, then turn it to adjust Holdoff time.

Make such settings in Channel 1 as Rising for Slop, Auto for Mode and DC for Coupling. The operation steps are as follows:

1. Press the TRIG MENU button and call out the trigger menu.
2. Press the F1 menu selection button and select Edge for Type.
3. Press the F2 menu selection button and choose CH1 for Source.
4. Press the F3 menu selection button and select Rising for Slope.
5. Press the F4 menu selection button and choose Auto for Mode.

6. Press the F5 menu selection button to next menu.

7. Press the F2 menu selection button and choose DC for Coupling. The display in the screen is as Fig.31.

8. Press the F3 menu button to select Holdoff, use trig level knob to adjust Holdoff.

9. Press the F1 menu selection button to back to previous menu.

10. Press the F3 menu selection button and choose Falling for Slope. For the screen display, see Fig.32.

![Fig.31 Wave Form Triggered on the Rising Edge](image-url)
After choosing “Video Trigger”, a trigger is possible in field or line of NTSC, PAL or SECAM standard video signal.

The operation menu of Video Trigger is shown as Fig.33.

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>CH1</td>
<td>Set Channel 1 as the trigger signal of the source.</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>Set Channel 2 as the trigger signal of the source.</td>
</tr>
<tr>
<td></td>
<td>EXT</td>
<td>Set the external input channel as the trigger signal of the source.</td>
</tr>
<tr>
<td></td>
<td>EXT/5</td>
<td>Divide the external trigger source by 5 and expand</td>
</tr>
</tbody>
</table>
Sync

<table>
<thead>
<tr>
<th>Line</th>
<th>Field</th>
<th>Odd field</th>
<th>Even field</th>
<th>Designed Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set a trigger level synchronization in the video line.</td>
<td>Set a trigger level synchronization in the video field.</td>
<td>Set synchronous trigger in the video odd field.</td>
<td>Set synchronous trigger in video even field.</td>
<td>Set synchronous trigger in designer line.</td>
</tr>
</tbody>
</table>

Modulation

<table>
<thead>
<tr>
<th>Modulation</th>
<th>NTSC</th>
<th>PAL/SECAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set synchronization and account choose video standard.</td>
<td>Go to next menu.</td>
<td>Back to previous menu.</td>
</tr>
</tbody>
</table>

HoldOff

<table>
<thead>
<tr>
<th>HoldOff</th>
<th>100ns～10s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjust “TRIG LEVEL” key to set time slot before another trigger event.</td>
<td>Reset hold time to 100ns.</td>
</tr>
</tbody>
</table>

The operation steps for setting Channel 1 in Video Trigger Mode are as below:
1. Press the **TRIG MENU** button and get access to the trigger menu.
2. Press the **F1** menu selection button and choose **Video** for Type.
3. Press the **F2** menu selection button and choose **CH1** for Source.
4. Press the **F3** menu selection button and choose **Field** for Sync. The screen display is shown as Fig.34.

Fig.34 Wave Form Triggered in the Video Field
The trigger control of PDS7062T、PDS7102T

There are two trigger modes: alternate trigger and single trigger.

Single trigger: Use a trigger level to capture stable waveforms in two channels simultaneously

Alternate trigger: Trigger synchronous signals steadily. The two channels could acquire the waveforms when the CH1 and CH2 are inputting two different frequency signals.

Single trigger

Single trigger mode have edge trigger and video trigger, you can see different trigger type for two vertical channels in this menu.

Edge Trigger: It happens when the trigger input passes through a given level along the set direction.

Video Trigger: Carry out the field or line video trigger of the standard video signal.

The Edge and Video Trigger menus are described respectively as below:

Edge Trigger

Under the Edge Trigger mode, a trigger happens in the trigger threshold value of the input signal edge. When the Edge Trigger is selected, a trigger will occur in the rising or falling edge of the input signal.

The Edge Trigger Menu is shown as Fig.35.

Fig.35 Edge Trigger Menu
Single trigger mode of the **Edge Trigger Menu** is described as below:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>CH1</td>
<td>Set Channel 1 as the trigger signal of the source.</td>
</tr>
<tr>
<td>Source</td>
<td>CH2</td>
<td>Set Channel 2 as the trigger signal of the source.</td>
</tr>
<tr>
<td>Source</td>
<td>EXT</td>
<td>Set the external trigger channel as the trigger signal of the source.</td>
</tr>
<tr>
<td>Source</td>
<td>EXT/5</td>
<td>Divide the External Trigger Source by 5 to expand the external trigger level range.</td>
</tr>
<tr>
<td>Type</td>
<td>Edge</td>
<td>Set vertical channel trigger type for edge trigger.</td>
</tr>
<tr>
<td>Slope</td>
<td>Rising</td>
<td>Set a trigger on the rising edge of the signal.</td>
</tr>
<tr>
<td>Slope</td>
<td>Falling</td>
<td>Set a trigger on the falling edge of the signal.</td>
</tr>
<tr>
<td>Trig mode</td>
<td>Auto</td>
<td>Collect the waveform even if there is not trigger condition is detected.</td>
</tr>
<tr>
<td>Trig mode</td>
<td>Normal</td>
<td>Collect the waveform only when the trigger condition is fulfilled.</td>
</tr>
<tr>
<td>Trig mode</td>
<td>Single</td>
<td>Collect a waveform when a trigger is detected, and then stop sampling.</td>
</tr>
<tr>
<td>Coupling</td>
<td>AC</td>
<td>Block the direct current component.</td>
</tr>
<tr>
<td>Coupling</td>
<td>DC</td>
<td>Unblock all components.</td>
</tr>
<tr>
<td>Coupling</td>
<td>HF Rjc</td>
<td>Block the high-frequency signal and only unblock the low-frequency component.</td>
</tr>
<tr>
<td>Coupling</td>
<td>LF Rjc</td>
<td>Block the low-frequency signal and only unblock the high-frequency component.</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.2div</td>
<td>Set trigger sensitivity.</td>
</tr>
<tr>
<td>Holdoff</td>
<td>100ns</td>
<td>Turn “TRIG LEVEL” knob to set time slot before another trigger event.</td>
</tr>
</tbody>
</table>

Make such settings in Channel 1 as Rising for Slop, Auto for Mode and DC for Coupling. The operation steps are as follows:

1. Press the **TRIG MENU** button and call out the trigger menu.
2. Press the **F1** menu selection button and select **single** for Type.
3. Press the **F2** menu selection button and select **CH1** for source.
4. Press the **F2** menu selection button and select **CH1** for source.
5. Press the **F4** menu selection button and choose **Rising** for Slope.
6. Press the **F5** menu selection button to next menu and press the **F2** menu selection button choose **AUTO** for Coupling.
7. Press the **F3** menu selection button to choose **DC** for Coupling. The display in the screen is as Fig.36.
Video Trigger

The operation menu of Video Trigger is shown as Fig.37.

Fig.37 Video Trigger Menu

The description of the Video Trigger menu is shown the following table:
Function Menu

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>Set Channel 1 as the trigger signal of the source.</td>
</tr>
<tr>
<td>CH2</td>
<td>Set Channel 2 as the trigger signal of the source.</td>
</tr>
<tr>
<td>EXT</td>
<td>Set the external input channel as the trigger signal of the source.</td>
</tr>
<tr>
<td>EXT/5</td>
<td>Divide the external trigger source by 5 and expand the external trigger level range.</td>
</tr>
</tbody>
</table>

Type:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>Set vertical channel trigger type for video trigger.</td>
</tr>
</tbody>
</table>

Video Type:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>Set a trigger level synchronization in the video line.</td>
</tr>
<tr>
<td>Field</td>
<td>Set a trigger level synchronization in the video field.</td>
</tr>
<tr>
<td>Odd field</td>
<td>Set synchronous trigger in the video odd field.</td>
</tr>
<tr>
<td>Even field</td>
<td>Set synchronous trigger in video even field.</td>
</tr>
<tr>
<td>Designed Line</td>
<td>Set synchronous trigger in designer line.</td>
</tr>
</tbody>
</table>

Modulation:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>Set synchronization and account choose video standard.</td>
</tr>
<tr>
<td>PAL/SECAM</td>
<td></td>
</tr>
</tbody>
</table>

Holdoff:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100ns~10s</td>
<td>Turn “TRIG LEVEL” knob to set time slot before another trigger event</td>
</tr>
</tbody>
</table>

HoldOff Reset:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reset hold time to 100ns.</td>
</tr>
</tbody>
</table>

The operation steps for setting Channel 1 in Video Trigger Mode are as below:

1. Press the TRIG MENU button and call out the trigger menu.
2. Press the F1 menu selection button and choose single for Type.
3. Press the F2 menu selection button and choose CH2 for Source.
4. Press the F3 menu selection button and choose Video for Type.
5. Press the F4 menu selection button and choose Field for Sync. The screen display is shown as Fig.38.
6. Press the F2 menu selection button and choose CH1 for Source.
7. Press the F4 menu selection button again and choose Line for Slope. The screen display is shown as Fig.39.
Alternate trigger

During alternate trigger the trigger signal mainly come from two vertical channels and it can use to observe two irrelevant signals. You can see different trigger type for two vertical channels in this menu. You can set edge or video.
Two trigger vertical point display on the screen when set for alternate trigger. (red: CH1, yellow: CH2)

Alternate trigger menu display is shown as Fig40, Fig41:

```
Fig40: Alternate edge trigger menu
Fig41: Alternate video trigger menu
```

The set and edge trigger are the same when trigger type for edge. The set and video trigger are the same when trigger type for video.

CH1 measures 10K Hz sine wave, CH2 measures a video signal. Alternate trigger set steps are as follows:

1. Press the TRIG MENU button and call out the trigger menu.
2. Press the F1 menu selection button and select Alternate for Type.
3. Press the F2 menu selection button and select source for CH1.
4. Press the F3 menu selection button and choose Edge for Type.
5. Press the F4 menu selection button and choose Rising for Slope.
6. Press the F5 menu selection button and choose next menu.
7. Press the F2 menu selection button and choose DC for Coupling.
8. Press the F3 menu selection button and display 0.5div of Sensitivity CH1 trigger complete set.
9. Press the F4 menu button to select Holdoff, use trig level knob to adjust Holdoff.
10. Press the F1 menu selection button and return to the first-level menu.
11. Press F2 menu selection button and choose CH2 for source.
12. Press F3 menu selection button and choose video for type.
13. Press F4 menu selection button and choose line for sync.
14. Press F5 menu selection button to next menu.
15. Press F2 menu selection button and choose NTSC for modulation. CH2 trigger complete set.

After Acquire waveform is shown as Fig.42

![Fig.42 Alternate trigger waveform](image)

Term interpretation

Trigger modes: There are three kinds of trigger modes available for this oscilloscope, which is, auto, normal and single.

Automatic trigger mode: The oscilloscope can acquire the waveform without any triggering condition detected in this mode, in which it will be triggered compulsively when waiting for a specified period of time without any triggering condition ignited. When an invalid trigger is enforced, the oscilloscope cannot keep the waveform in phase.

Normal trigger mode: In this mode, the oscilloscope cannot acquire the waveform till it is triggered. When there is not any trigger, the oscilloscope will display the origin waveform without any new waveforms captured.

Single shot mode: In this mode, the oscilloscope will detect a trigger and capture a waveform at each time when the customer presses the RUN/STOP key.

Sensitivity: Trigger circuit including sluggish in order to exclude the influences from signal noise and get the stable trigger. The sluggish is adjustable among 0.2div~1.0div. It means when set on 1.0 div trigger circuit don’t have any response to any signal of PK-PK range ≤1.0div which to exclude the influences from signal noise.

Holdoff: A time interval before the oscilloscope responses to next trigger signal. During
this Holdoff period, the trigger system becomes “blind” to trigger signals. This function helps to view complex signals such as an AM waveform. Press Holdoff button to activate “TRIG LEVEL” knob, then turn it to adjust Holdoff time.

To operate the Function Menu

The function menu control zone includes 6 function menu buttons and 3 immediate-execution buttons: SAVE/RCL, MEASURE, ACQUIRE, UTILITY, CURSOR, DISPLAY, AUTOSCALE, AUTOSET and RUN/STOP.

To perform Sampling Setup

Press the ACQUIRE button and the menu is displayed in the screen, shown as Fig.43.

![Fig.43 ACQU MODE Menu](image)

The description of the **Sampling Setup Menu** is shown as follows:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td></td>
<td>General sampling mode.</td>
</tr>
<tr>
<td>Peak Detect</td>
<td></td>
<td>It is used for the detection of the jamming burr and the possibility of reducing the confusion.</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>It is used to reduce the random and don’t-care noises, with the optional number of averages.</td>
</tr>
<tr>
<td>Averages</td>
<td>4, 16, 64, 128</td>
<td>Choose the number of averages.</td>
</tr>
</tbody>
</table>
Change the **ACQU Mode** settings and observe the consequent variation of the waveform displayed.

Fig.44 Peak Detect mode, under which the burrs on the falling edge of the square wave, can be detected and the noise is heavy.

Fig.45 Common **ACQU Mode** display, in which no burr can be detected.
Fig.46 The displayed wave form after the noise is removed under the Average Mode, in which the average number of 16 is set.

To set the Display System

Push down the DISPLAY button and the menu displayed in the screen is shown as Fig.47.

Fig.47 Display Set Menu

The description of the Display Set Menu is shown as follows:
<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Vectors</td>
<td>The space between the adjacent sampling points in the display is filled with the vector form.</td>
</tr>
<tr>
<td></td>
<td>Dots</td>
<td>Only the sampling points are displayed.</td>
</tr>
<tr>
<td>Persist</td>
<td>OFF</td>
<td>Set the persistence time for each sampling point.</td>
</tr>
<tr>
<td></td>
<td>1sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infinite</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>YT</td>
<td>Show the relative relation between the vertical voltage and the horizontal time.</td>
</tr>
<tr>
<td></td>
<td>XY</td>
<td>Channel 1 is displayed on the horizontal axis and Channel 2 on the vertical axis.</td>
</tr>
<tr>
<td>Carry</td>
<td>Bitmap</td>
<td>The data transmitted in communication are in the bitmap form.</td>
</tr>
<tr>
<td></td>
<td>Vectors</td>
<td>The data transmitted in communication are in the vector form.</td>
</tr>
<tr>
<td>Battery</td>
<td>On</td>
<td>Battery power content symbol on</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Battery power content symbol off</td>
</tr>
</tbody>
</table>

Display Type: With the **F1** menu selection button pushed down, you can shift between **Vectors** and **Dots** types. The differences between the two display types can be observed through the comparison between Fig.48 and Fig.49.

Fig.48 Display in the Vector Form
Persist

When the Persist function is used, the persistence display effect of the picture tube oscilloscope can be simulated: the reserved original data is displayed in fade color and the new data is in bright color. With the F2 menu selection button, different persistence time can be chosen: 1sec, 2sec, 5sec, Infinite and Closed. When the “Infinite” option is set for Persist time, the measuring points will be stored till the controlling value is changed (see Fig.50).
XY Format

This format is only applicable to Channel 1 and Channel 2. After the XY display format is selected, Channel 1 is displayed in the horizontal axis and Channel 2 in the vertical axis; the oscilloscope is set in the untriggered sample mode: the data are displayed as bright spots and the sampling rate is 1MS/s and can not be changed.

The operations of all control knobs are as follows:

- The Vertical VOLTS/DIV and the Vertical POSITION knobs of Channel 1 are used to set the horizontal scale and position.
- The Vertical VOLTS/DIV and the Vertical POSITION knobs of Channel 2 are used to set the vertical scale and position continuously.

The following functions can not work in the XY Format:

- Reference or digital wave form
- Cursor
- Time base control
- Trigger control

Operation steps:
1. Press the DISPLAY button and call out the Display Set Menu.
2. Press the F3 menu selection button and choose the form as XY. The display
format is changed to be XY mode (see Fig.51).

![Fig.51 XY Display Mode](image)

To Save and Recall a Waveform

Press the SAVE/RCL button, you can save and call out the wave forms in the instrument. The menu displayed in the screen is shown as Fig.52.

![Fig.52 Wave Form Save Menu](image)
The description of the **Wave Form Save Menu** is shown as the following table:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>CH1, CH2, MATH</td>
<td>Choose the wave form to be saved.</td>
</tr>
<tr>
<td>WAVE</td>
<td>A, B, C, D</td>
<td>Choose the address in or from which the waveform is saved or can be get access to.</td>
</tr>
<tr>
<td>Save</td>
<td></td>
<td>Save the wave form of the source in the selected address.</td>
</tr>
<tr>
<td>CHA</td>
<td>OFF, ON</td>
<td>Switch on or off the display of the stored waveform.</td>
</tr>
</tbody>
</table>

Save and recall the wave form

The PDS series oscilloscope can store four wave forms, which can be displayed with the current wave form at the same time. The stored wave form called out can not be adjusted.

In order to save the wave form of the channel CH1 into the address A, the operation steps should be followed:

1. Press the **F1** menu selection button and choose CH1 for Source.
2. Press the **F2** menu selection button and choose A for Wave.
3. Press the **F3** menu selection button and save the wave form.
4. Press the **F4** menu selection button and choose **ON** for CHA. The stored wave form A will be displayed in the screen. The voltage level and time base level will also be shown at the upper left corner of the display area at the same time (see Fig.53).
To perform the Auxiliary System Function Setting

Press the UNTILITY button and the menu is displayed in the screen as Fig.54.

Fig.54 Function Menu
The description of the **Auxiliary Function Menu** is shown as the following table.

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Status</td>
<td>Display</td>
<td>Display the system function menu.</td>
</tr>
<tr>
<td>Recall Factory</td>
<td>Call out</td>
<td>Call out the factory settings.</td>
</tr>
<tr>
<td>Do Self Cal</td>
<td>Carry out</td>
<td>Carry out the self-calibration procedure.</td>
</tr>
<tr>
<td>Language</td>
<td>Chinese</td>
<td>Choose the display language of the operating system.</td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
</tr>
</tbody>
</table>

Perform Self-Calibration

The self-calibration procedure can improve the accuracy of the oscilloscope under the ambient temperature to the greatest extent. If the change of the ambient temperature is up to or exceeds 5°C, the self-calibration procedure should be executed to obtain the highest level of accuracy.

Before executing the self-calibration procedure, disconnect the probe or wire and the input connector. Then, press the **F3** menu selection button and choose “**Perform Self-Calibration**”. After confirming it is all set, push down **F3** button and choose “**Perform Self-Calibration**”, entering the self-calibration procedure of the instrument.

SYS STAT (System State)

Press the **F1** menu selection button and choose “**SYS STAT**” item. The menu pops up in the screen as Fig.55.

![SYS STAT Menu](image)
The “SYS STAT” menu is described as the following table:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>Show the horizontal parameter of the channel.</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>Show the vertical parameter of the channel.</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>Show the parameters of the trigger system.</td>
<td></td>
</tr>
<tr>
<td>Misc</td>
<td>Show the serial number and edition number.</td>
<td></td>
</tr>
</tbody>
</table>

After entering into the SYS STAT menu, choose the corresponding function, with the corresponding parameters shown in the screen. If press the F1 menu selection button and choose the function item “Horizontal”, the Horizontal System State will be displayed in the screen. Press any other function button and exit from the SYS STAT menu (see Fig.56).

![Horizontal System State](Image)

Fig.56 Horizontal System State

To perform the Automatic Measurement

With the Measure button pressed down, an automatic measurement can be performed. There are 20 types of measurements and 4 measurement results can be displayed simultaneously.

The 20 types automatic measurements include frequency, cycle, average value, peak-to-peak value, root mean square value, Vmax, Vmin, Vtop, Vbase, Vamp, Overshoot, Preshoot, RiseTime, Fall Time, +Width, -Width, +Duty, -Duty, DelayA→B↑ and DelayA→B↓.
Press the F1 menu selection button to choose **Source** or **Type** menu. You can choose the channel to be measured from the **Source** menu and choose the measurement **Type** (Freq, Cycle, Mean, PK–PK, RMS and None). The menu is displayed as Fig.57.

![Fig.57 Measure Menu](image)

Term interpretation

Vpp: Peak-to-Peak Voltage.

Vmax: The maximum amplitude. The most positive peak voltage measured over the entire waveform.

Vmin: The minimum amplitude. The most negative peak voltage measured over the entire waveform.

Vamp: Voltage between Vtop and Vbase of a waveform.

Vtop: Voltage of the waveform’s flat top, useful for square/pulse waveforms.

Vbase: Voltage of the waveform’s flat base, useful for square/pulse waveforms.

Overshoot: Defined as (Vmax-Vtop)/Vamp, useful for square and pulse waveforms.

Preshoot: Defined as (Vmin-Vbase)/Vamp, useful for square and pulse waveforms.

Average: The arithmetic mean over the entire waveform.

Vrms: The true Root Mean Square voltage over the entire waveform.

Rise Time: Time that the leading edge of the first pulse in the waveform takes to rise from 10% to 90% of its amplitude.

Fall Time: Time that the falling edge of the first pulse in the waveform takes to fall from 90% to 10% of its amplitude.

+Width: The width of the first positive pulse in 50% amplitude points.

-Width: The width of the first negative pulse in the 50% amplitude points.
Delay 1→2\(\uparrow \): The delay between the two channels at the rising edge.
Delay 1→2\(\downarrow \): The delay between the two channels at the falling edge.

+Duty: +Duty Cycle, defined as +Width/Period.

-Duty: -Duty Cycle, defined as -Width/Period.

Measure

Four automatic measured values can be shown one time at maximum for the waveform of each channel. Only if the waveform channel is in the ON state can the measurement be carried out. No automatic measurement can be made for the saved or the mathematically manipulated waveform, or in the XY or Scan format.

Measure the frequency, the peak-to-peak value of the Channel CH1 and the mean, the RMS of the Channel CH2, according the following steps:

1. Press the F1 menu selection button and choose Source.
2. Press the F2 menu selection button and choose CH1.
3. Press the F3 menu selection button and choose CH1.
4. Press the F4 menu selection button and choose CH2.
5. Press the F5 menu selection button and choose CH2.
6. Press the F1 menu selection button and choose Type.
7. Press the F2 menu selection button and choose Freq.
8. Press the F3 menu selection button and choose Pk-Pk.
9. Press the F4 menu selection button and choose Mean.
10. Press the F5 menu selection button and choose Cyc RMS.

The measured value will be displayed in the reading window automatically (see Fig.58).
To perform the Cursor Measurement

Press the CURSOR button to display the cursor measurement function menu (CURS MEAS) in the screen, which includes Voltage Measurement and Time Measurement, shown as Fig.59.
The description of the cursor measurement menu is shown as the following table:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>OFF</td>
<td>Switch off the cursor measurement.</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>Display the voltage measurement cursor and menu.</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>Show time measures the cursor and menu.</td>
</tr>
<tr>
<td>Source</td>
<td>CH1, CH2</td>
<td>Choose the channel generating the wave form to which the cursor measurement will be applied.</td>
</tr>
<tr>
<td>Delta</td>
<td></td>
<td>Read the difference between cursors.</td>
</tr>
<tr>
<td>Cursor 1</td>
<td></td>
<td>Read the position of Cursor 1 (the Time is read with reference to the horizontal trigger position and the Voltage is to the ground point).</td>
</tr>
<tr>
<td>Cursor 2</td>
<td></td>
<td>Read the position of Cursor 1 (the Time is read with reference to the horizontal trigger position and the Voltage is to the ground point).</td>
</tr>
</tbody>
</table>

Cursor Measurement

When carrying out the cursor measurement, the position of Cursor 1 can be adjusted with the CURSOR1 (VERTICAL POSITION) knob of Channel 1, and that of Cursor 2 can be adjusted with the CURSOR2 (VERTICAL POSITION) knob of Channel 2.

Perform the following operation steps for the voltage cursor measurement of the
channel CH1:

1. Press CURSOR and recall the Curs Meas menu.
2. Press the F1 menu selection button to choose Voltage for Type, with two purple dotted lines displayed along the horizontal direction of the screen, which indicating CURSOR1 and CURSOR2.
3. Press the F2 menu selection button and choose CH1 for Source.
4. Adjust the positions of CURSOR1 and CURSOR2 according to the measured wave form, with the absolute value of the voltage amplitude difference between Cursor 1 and Cursor 2 displayed in the increment window. The current position of Cursor1 is displayed in the Cursor1 window and that of Cursor2 is displayed in the Cursor2 window (see Fig.60).

![Wave Form of Voltage Cursor Measurement](image)

Fig.60 Wave Form of Voltage Cursor Measurement

Carry out the following operation steps for the time cursor measurement of the channel CH1:

1. Press “CURSOR” and recall the CURS MEAS menu.
2. Press the F1 menu selection button and choose Time for Type, with two purple dotted lines displayed along the vertical direction of the screen, which indicating Cursor 1 and Cursor 2.
3. Press the F2 menu selection button and choose CH1 for Source.
4. Adjust the positions of CURSOR1 and CURSOR2 according to the measured wave form, with the cycle and frequency of Cursor1 and Cursor 2 displayed in the increment window. The current position of Cursor1 is displayed in the
Cursor1 window and that of Cursor2 is displayed in the Cursor2 window (see Fig. 61).

To use Autoscale

The function is applied to follow-up signals automatically even if the signals change at any time. Autoscale enables the instrument to set up trigger mode, voltage division and time scale automatically according to the type, amplitude and frequency of the signals. The menu is as follows:

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Setting</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoscale</td>
<td>OFF</td>
<td>Turn off Autoscale</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Turn on Autoscale</td>
</tr>
<tr>
<td>Mode</td>
<td>Vertical</td>
<td>Follow-up and adjust vertical scale without changing horizontal setting</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>Follow-up and adjust horizontal scale without changing vertical setting</td>
</tr>
<tr>
<td></td>
<td>HORI—VERT</td>
<td>Follow-up and adjust the vertical and horizontal settings.</td>
</tr>
</tbody>
</table>
If you want to measure the two-channel signal, you can do as the follows:

1. Press **Autoscale**, the function menu will appear on the right of the screen.

2. Press **F1** and choose **ON**.

3. Press **F2** and choose Horizontal- Vertical for **Mode** item.

4. Press **F3** and choose **Wave** for **Wave** item.

Then the wave is displayed in the screen, shown as Fig.62.

![Fig.62: Autoscale Horizontal- Vertical multi-period waveforms](image-url)
Note:

1. Entering into Autoscale function and flicker will be on the top left corner. (flicker every 0.5 second)

2. At the mode of Autoscale, the oscilloscope can self-estimate “Trigger Type” (Edge, Video, and Alternate) and “Mode” (Edge, Video). If now, you press “Trigger mode” or “Type”, the forbidden information will display on the screen.

3. At the mode of XY and STOP status, pressing AUTO SET to enter into Autoscale, DSO switches to YT mode and AUTO status.

4. At the mode of Autoscale, DSO is always in the state of DC coupling and AUTO triggering. In this case, the forbidden information will be showing when making Triggering or Coupling settings.

5. At the mode of Autoscale, if adjust the vertical position, voltage division, trigger level or time scale of CH1 or CH2, the oscilloscope will turn off Autoscale function and if press AUTOSET again, the oscilloscope will enter into Autoscale.

6. Turn off the submenu at the Autoscale menu, the Autoscale is off and turn on the submenu still enters into the function.

7. When video triggering, the horizontal time scale is 50us. If one channel is showing edge signal, the other channel is showing video one, the time scale refers to 50us as video one as standard.

8. While the Autoscale is working, below settings will be made forcibly:
 (1) The unit will switch from non-main time base to main time base status.
 (2) The unit will switch to Peak detection menu while in the state of Average sampling mode.
To use Executive Buttons

The executive buttons include AUTOSET, RUN/STOP.

AUTOSET

This button is used for the automatic setting of all control values of the instrument to generate the wave form suitable for observation. Press the AUTOSET button and the oscilloscope will perform the fast automatic measurement of the signal.

The function items of AUTOSET are shown as the following table:

<table>
<thead>
<tr>
<th>Function Items</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Mode</td>
<td>Current</td>
</tr>
<tr>
<td>Vertical Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Vertical Scale</td>
<td>Adjust to the proper division.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Full</td>
</tr>
<tr>
<td>Horizontal Level</td>
<td>Middle</td>
</tr>
<tr>
<td>Horizontal Scale</td>
<td>Adjust to the proper division</td>
</tr>
<tr>
<td>Trigger Type</td>
<td>Current</td>
</tr>
<tr>
<td>Trigger Source</td>
<td>Show the minimum number of channels.</td>
</tr>
<tr>
<td>Trigger Coupling</td>
<td>Current</td>
</tr>
<tr>
<td>Trigger Slope</td>
<td>Current</td>
</tr>
<tr>
<td>Trigger Level</td>
<td>Mid-point Setting</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Auto</td>
</tr>
<tr>
<td>Display Format</td>
<td>YT</td>
</tr>
</tbody>
</table>

RUN/STOP: Enable or disable the waveform sampling.

Notice: Under the Stop state, the vertical division and the horizontal time base of the wave form can be adjusted within a certain range, in other words, the signal can be expanded in the horizontal or vertical direction.

When the horizontal time base equal to or is less than 50ms, the horizontal time base can be expanded for 4 divisions downwards.
Quick Start Guide

Example 1: Measurement of Simple Signals

Observe an unknown signal in the circuit, and display and measure rapidly the frequency and peak-to-peak value of the signal.

1. **Carry out the following operation steps for the rapid display of this signal:**
 1. Set the probe menu attenuation coefficient as 10X and that of the switch in the probe switch as 10X.
 2. Connect the probe of **Channel 1** to the measured point of the circuit.
 3. Push down the **AUTOSET** button.

 The oscilloscope will perform the **AUTPSET** to make the wave form optimized, based on which, you can further regulate the vertical and horizontal divisions till the waveform meets your requirement.

2. **Perform Automatic Measurement**

 The oscilloscope can measure most displayed signals automatically. Complete the following operations for the measurement of frequency, cycle, and mean and peak-to-peak value:

 1. Press the **MEASURE** button to show the automatic measurement function menu.
 2. Press the **F1** menu selection button and choose **Source**, with the **Source** menu displayed.
 3. Press the **F2**, **F3**, **F4** and **F5** menu selection buttons and choose **CH1**.
 4. Press the **F1** menu selection button again and choose **Type**, with the **Type** menu displayed.
 5. Press the **F2** menu selection button and choose **Freq**.
 6. Press the **F3** menu selection button and choose **Period**.
 7. Press the **F4** menu selection button and choose **Mean**.
 8. Press the **F5** menu selection button and choose **Pk-Pk**.

 Then, the frequency, cycle, mean and peak-to-peak value will present in the menu and change periodically (see Fig.64).
Example 2: Gain of the Amplifier in the Metering Circuit

Set the probe menu attenuation coefficient as \textbf{10X} and that of the switch in the probe as \textbf{10X}.

Connect the oscilloscope CH1 channel with the circuit signal input end and the CH2 channel to the output end.

Operation Steps

1. Push down the \textbf{AUTOSET} button and the oscilloscope will automatically adjust the waveforms of the two channels into the proper display state.
2. Push down the \textbf{MEASURE} button to show the MEASURE menu.
3. Press the \textbf{F1} menu selection button and choose \textbf{Source}.
4. Press the \textbf{F2} menu selection button and choose \textbf{CH1}.
5. Press the \textbf{F3} menu selection button and choose \textbf{CH2}.
6. Press the \textbf{F1} menu selection button again and choose \textbf{Type}.
7. Press the \textbf{F2} menu selection button and choose \textbf{Pk-Pk}.
8. Press the \textbf{F3} menu selection button and choose \textbf{Pk-Pk}.
9. Read the peak-to-peak values of Channel 1 and Channel 2 from the displayed
menu (see Fig.65).

10. Calculate the amplifier gain with the following formulas.

\[
\text{Gain} = \frac{\text{Output Signal}}{\text{Input signal}}
\]

\[
\text{Gain (db)} = 20 \times \log (\text{gain})
\]

![Wave Form of Gain Measurement](image)

Fig.65 Wave Form of Gain Measurement

Example 3: Capture the Single Signal

The digital storage oscilloscope takes the lead in providing the convenience capturing of such non-periodic signals as pulse and burr, etc. If you intent to capture a single signal, you can not set the trigger level and the trigger edge unless you have particular priori knowledge of this signal. For example, if the pulse is the logic signal of a TTL level, the trigger level should be set to 2 volts and the trigger edge be set as the rising edge trigger. If it is uncertain as to the signal, you can make an observation of it in advance under the automatic or ordinary mode to determine the trigger level and the trigger edge.

The operation steps are as follows:
1. Set the probe menu attenuation coefficient to 10X and that of the switch in the probe to 10X.

2. Adjust the VOLTS/DIV and SEC/DIV knobs to set up a proper vertical and horizontal ranges for the signal to be observed.

3. Press the button ACQUIRE to display the ACQUIRE Mode menu.

4. Press the F2 menu selection button and choose Peak Detect.

5. Press the TRIG MENU button to display the Trigger Mode menu.

The following steps are different for different models.

PDS5022S, PDS6042S, PDS6062S, PDS6062T

6. Press the F1 menu selection button and choose Edge as the trigger type.

7. Press the F4 menu selection button and choose Single as the trigger mode.

8. Press the F3 menu selection button and choose Rising as the slope.

9. Rotate the LEVEL knob and adjust the trigger level to the mid-value of the signal to be measured.

10. If the Trigger State Indicator at the top of the screen does not indicate Ready, push down the RUN/STOP button and start Acquire, waiting the emergence of the signal in conformity with the trigger conditions. If a signal reaches to the set trigger level, one sampling will be made and then displayed in the screen. With this function, any random occurrence can be captured easily. Taking the burst burr of larger amplitude for example, set the trigger level to the value just greater than the normal signal level, and then press the RUN/STOP button and wait. When there is a burr occurring, the instrument will trigger automatically and record the waveform generated during the period around the trigger time. With the HORIZONTAL POSITION knob in the horizontal control area in the panel rotated, you can change the horizontal position of the trigger position to obtain the negative delay, making an easy observation of the waveform before the burr occurs (see Fig. 66).
Fig. 66 Capture the Single Signal

PDS7062T, PDS7102T

6. Press the F1 menu selection button and choose Single as the trigger type.
7. Press the F2 menu selection button and choose CH1 as the source.
8. Press the F3 menu selection button and choose Edge as the trigger type.
9. Press the F4 menu selection button and choose Rising as the slope.
10. Press the F5 menu selection button to next menu.
11. Press the F2 menu selection button and choose Single as the trigger mode.
12. Rotate the LEVEL knob and adjust the trigger level to the mid-value of the signal to be measured.
13. If the Trigger State Indicator at the top of the screen does not indicate Ready, push down the RUN/STOP button and start Acquire, waiting the emergence of the signal in conformity with the trigger conditions. If a signal reaches to the set trigger level, one sampling will be made and then displayed in the screen. With this function, any random occurrence can be captured easily. Taking the burst burr of larger amplitude for example, set the trigger level to the value just greater than the normal signal level, and then press the RUN/STOP button and wait. When there is a burr occurring, the instrument will trigger automatically and record the wave form generated during the period around the trigger time. With the HORIZONTAL POSITION knob in the horizontal control area in the panel rotated, you can change the horizontal position of the trigger position to obtain the negative delay, making an easy observation of the waveform before the burr occurs (see Fig.67).
Fig.67 Capture the Single Signal

Example 4: Analyze the Details of a Signal

Observe the Signal Containing Noises

If the signal is interfered by the noise, the noise may cause a failure in the circuit. For the analyzing of the noise in detail, please operate the instrument according to the following steps:

1. Press the **ACQUIRE** button to display the **ACQU MODE** menu.
2. Press the **F2** menu selection button and choose **Peak Detect**.

In this case, the screen display contains the wave form of a random noise. Especially when the time base is set as Low Speed, then noise peak and burr contained in the signal can be observed with the peak detection (See Fig.68).
Fig.68 Wave Form of the Signal Containing Noises

Separate Noises from the Signal

When analyze the wave form of a signal, you should remove the noise contained in it. For the reduction of the random noise in the oscilloscope display, please operate the instrument according to the following step:

1. Press the ACQUIRE button to show the ACQU MODE menu.
2. Press the F3 menu selection button and choose Average.
3. Press the F4 menu selection button and observe the wave form obtained from averaging the wave forms of different average number.

After the averaging, the random noise is reduced and the detail of the signal is easier to be observed. Shown as follows, after the noise is removed, the burrs on the rising and falling edges appear (see Fig.69).
Example 5: Application of X-Y Function

Examine the Phase Difference between Signals of two Channels

Example: Test the phase change of the signal after it passes through a circuit network.

Connect the oscilloscope with the circuit and monitor the input and output signals of the circuit.

For the examination of the input and output of the circuit in the form of X-Y coordinate graph, please operate according to the following steps:

1. Set the probe menu attenuation coefficient for 10X and that of the switch in the probe for 10X.

2. Connect the probe of channel 1 to the input of the network and that of Channel 2 to the output of the network.

3. Push down the AUTOSET button, with the oscilloscope turning on the signals of the two channels and displaying them in the screen.

4. Adjust the VOLTS/DIV knob, making the amplitudes of two signals equal in the rough.

5. Push down the DISPLAY button and recall the DISP SET menu.

6. Press the F3 menu selection button and choose XY for Format. The oscilloscope will display the input and terminal characteristics of the network in the Lissajou’s graph form.
8. Adjust the **VOLTS/DIV** and **VERTICAL POSITION** knobs, optimizing the wave form.

9. With the elliptical oscillogram method adopted, observe and calculate the phase difference (see Fig.70).

![Lissajous Graph](image)

Fig.70 Lissajous Graph

Based on the expression \(\sin q = A/B \) or \(C/D \), where, \(q \) is the phase difference angle, and the definitions of \(A, B, C, \) and \(D \) are shown as the graph above. As a result, the phase difference angle can be obtained, namely, \(q = \pm \arcsin (A/B) \) or \(\pm \arcsin (C/D) \).

If the principal axis of the ellipse is in I and III quadrants, the determined phase difference angle should be in I and IV quadrants, that is, in the range of \((0 - \pi/2)\) or \((3\pi/2 - 2\pi)\). If the principal axis of the ellipse is in the II and IV quadrants, the determined phase difference angle is in the II and III quadrants, that is, within the range of \((\pi/2 - \pi)\) or \((\pi - 3\pi/2)\).

Example 6: Video Signal Trigger

Observe the video circuit of a television, apply the video trigger and obtain the stable video output signal display.

Video Field Trigger for PDS5022S, PDS6042S, PDS6062S, PDS6062T

For the trigger in the video field, carry out operations according to the following steps:
1. Press the **TRIG MENU** button to display the trigger menu.

2. Press the **F1** menu selection button and choose **Video** for Type.

3. Press the **F2** menu selection button and choose **CH1** for Source.

4. Press the **F3** menu selection button and choose **Field** for Sync.

5. Adjust the **VOLTS/DIV, VERTICAL POSITION and SEC/DIV** knobs to obtain a proper wave form display (see Fig.71).

![Wave Form Obtained from Video Field Trigger](image.png)

Fig. 71 Wave Form Obtained from Video Field Trigger

Video Field Trigger for PDS7062T, PDS7102T

For the trigger in the video field, carry out operations according to the following steps:

1. Press the **TRIG MENU** button to display the trigger menu.

2. Press the **F1** menu selection button and choose **Single** for type.

3. Press the **F2** menu selection button and choose **CH1** for Source.

4. Press the **F3** menu selection button and choose **Video** for Type.

5. Press the **F4** menu selection button and choose **Field** for Sync.

6. Adjust the **VOLTS/DIV; VERTICAL POSITION and SEC/DIV** knobs to obtain a proper wave form display (see Fig.72).
Fig. 72 Wave Form Obtained from Video Field Trigger
Troubleshooting

1. In the case of that the oscilloscope is still in the black-screen state without any display after the power is switch on, perform the following Basic Troubleshooting hints procedure.
 - Check whether the power connection is connected properly.
 - Check whether the power switch is pushed down to the designated position.
 - Restart the instrument after be completed the checks above.
 - If this product still can not work normally, please get in touch with Lilliput and we will be under your service.

2. After acquiring the signal, carry out the following operations if the wave form of the signal is not displayed in the screen.
 - Check whether the probe is properly connected to the signal connecting wire.
 - Check whether the signal connecting wire is correctly connected to the BNC (namely, the channel connector).
 - Check whether the probe is properly connected with the object to be measured.
 - Check whether there is any signal generated from the object to be measured (the trouble can be shot by the connection of the channel from which there is a signal generated with the channel in fault).
 - Make the signal acquisition operation again.

3. The measured voltage amplitude value is 10 times greater or smaller than the actual value.
 Check whether the channel attenuation coefficient and the attenuation ration of the probe used in practical application is match.

4. There is wave form displayed, but it is not stable.
 - Check whether the Source item in the TRIG MODE menu is in conformity with the signal channel used in the practical application.
 - Check on the trigger Type item: The common signal chooses the Edge trigger mode for Type and the video signal the Video. Only if a proper trigger mode is applied, the wave form can be displayed steadily.
 - Try to change the trigger coupling into the high frequency suppress and the low frequency suppress to smooth the high frequency or low frequency noise triggered by the interference.

5. No Display Responses to the Push-down of RUN/STOP.
 Check whether Normal or Signal is chosen for Polarity in the TRIG MODE menu and the trigger level exceeds the wave form range.
 If it is, make the trigger level is centered in the screen or set the trigger mode as Auto.
 In addition, with the AUTOSET button pressed, the setting above can be completed automatically.

6. After the AVERAGE value sampling is set in the ACQU MODE or a longer duration is set in the DISP MODE, the display rate is slowed down.
 It is a normal phenomenon.
Appendix A: Technical Specifications

Unless otherwise specified, the technical specifications applied are applicable to the probe with the attenuation switch setting 10X and the PDS series digital oscilloscope. Only if the oscilloscope fulfill the following two conditions at first, can these specification standards be reached.

- This instrument should run for more than 30 minutes continuously under the specified operating temperature.
- If the change range of the operating temperature is up to or exceeds 5℃, open the system function menu and execute the “Self-calibration” procedure.

All specification standards can be fulfilled, except one(s) marked with the word “Typical”.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>25MHz ---- PDS5022S</td>
</tr>
<tr>
<td></td>
<td>40MHz ---- PDS6042S</td>
</tr>
<tr>
<td></td>
<td>60MHz ---- PDS6062S, PDS6062T, PDS7062T</td>
</tr>
<tr>
<td></td>
<td>100MHz ---- PDS7102T</td>
</tr>
<tr>
<td>Channel</td>
<td>2 + 1 (External)</td>
</tr>
<tr>
<td>Mode</td>
<td>Normal, Peak detect, Averaging</td>
</tr>
<tr>
<td>Sample rate</td>
<td>100MS/s ---- PDS5022S</td>
</tr>
<tr>
<td></td>
<td>250MS/s ---- PDS6042S, PDS6062S, PDS6062T</td>
</tr>
<tr>
<td></td>
<td>500MS/s ---- PDS7062T, PDS7102T</td>
</tr>
<tr>
<td>Input coupling</td>
<td>DC, AC, Ground</td>
</tr>
<tr>
<td>Input impedance</td>
<td>1MΩ±2%, in parallel with 20pF±5pF ---- PDS5022S, PDS6042S, PDS6062S, PDS6062T</td>
</tr>
<tr>
<td></td>
<td>1MΩ±2%, in parallel with 15pF±5pF ---- PDS7062T, PDS7102T</td>
</tr>
<tr>
<td>Probe attenuation factor</td>
<td>1X, 10X, 100X, 1000X</td>
</tr>
<tr>
<td>Max. input voltage</td>
<td>300V (PK-PK) (DC + AC PK-PK)</td>
</tr>
<tr>
<td>Horizontal System:</td>
<td>Sampling rate</td>
</tr>
<tr>
<td></td>
<td>10S/s ~ 100MS/s ---- PDS5022S</td>
</tr>
<tr>
<td></td>
<td>10S/s ~ 250MS/s ---- PDS6042S, PDS6062S, PDS6062T</td>
</tr>
<tr>
<td></td>
<td>1S/s ~ 500MS/s ---- PDS7062T, PDS7102T</td>
</tr>
<tr>
<td>Interpolation</td>
<td>(sin x) /x</td>
</tr>
</tbody>
</table>
| **Record length** | ● 5K points on each channel---- PDS5022S
● 6K points on each channel
 ---- PDS6042S, PDS6062S, PDS6062T, PDS7062T, PDS7102T |
|---------------------|---|
| **Scanning speed (S/div)** | ● 5ns/div~100s/div, step by 1~2.5~5
 ---- PDS5022S
● 5ns/div~100s/div, step by 1~2~5
 ---- PDS6042S, PDS6062S, PDS6062T, PDS7062T, PDS7102T |
| **Sampling rate / relay time accuracy** | ±100ppm |
| **Interval (△T) accuracy (DC~100MHz)** | Single: ±(1 interval time+100ppm×reading+0.6ns)
Average>16: ±(1 interval time +100ppm×reading+0.4ns) |
| **Vertical system:** | **A/D converter** | 8 bits resolution (2 Channels simultaneously) |
| **Sensitivity** | 5mV/div~5V/div (at input) |
| **Displacement** | ● ±10div(5mV/div~5V/div)----PDS5022S
● ±50V(500mV~5V), ±2V(5mV~200mV)
 ---- PDS6042S, PDS6062S, PDS6062T, PDS7062T, PDS7102T |
| **Single bandwidth** | Full bandwidth |
| **Low Frequency** | ≥5Hz (at input, AC coupling, -3dB) |
| **Rise time** | (at input, Typical) | ≤14ns----PDS5022S
≤8.75ns---- PDS60462S
≤5.8ns---- PDS6062S, PDS6062T, PDS7062T
≤3.5 ns----PDS7102T |
| **DC accuracy** | ± 3% |
The voltage difference (ΔV) between any two points on the waveform after averaging the captured waveforms of more than 16:

- $\pm (5\% \text{ Reading} + 0.05 \text{ divisions})$
 ---- PDS5022S, PDS6042S, PDS6062S, PDS6062T
- $\pm (3\% \text{ Reading} + 0.05 \text{ divisions})$
 ---- PDS7062T, PDS7102T

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Sensitivity</th>
<th>Adjustable: 0.2div~1.0div</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Edge</td>
<td>Rising, Falling</td>
</tr>
<tr>
<td></td>
<td>Video</td>
<td>Line synchronization, Field synchronization, Odd field, Even field, Any line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupling</th>
<th>DC, AC, LF Rjc, HF Rjc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger level range</td>
<td>Internal $\pm 6 \text{ div from the screen center}$</td>
</tr>
<tr>
<td></td>
<td>EXT $\pm 600\text{mV}$</td>
</tr>
<tr>
<td></td>
<td>EXT/5 $\pm 3\text{V}$</td>
</tr>
<tr>
<td>Trigger level</td>
<td>Internal $\pm 0.3\text{div}$</td>
</tr>
<tr>
<td></td>
<td>EXT $\pm (40\text{mV} + 6% \text{ of Set Value})$</td>
</tr>
<tr>
<td>Accuracy (typical)</td>
<td>EXT/5 $\pm (200\text{mV} +6% \text{ of Set Value})$</td>
</tr>
</tbody>
</table>

Horizontal Trigger displacement:
- Pre-trigger: 655 div
- Post-trigger: 4 div

Trigger Holdoff range: 100ns~10s

50% level setting (typical): Input signal frequency ≥ 50Hz

<table>
<thead>
<tr>
<th>Trigger sensitivity</th>
<th>Internal Peak-peak value of 2div</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Video trigger,</td>
<td>EXT 400mV</td>
</tr>
<tr>
<td>typical)</td>
<td>EXT/5 2V</td>
</tr>
</tbody>
</table>
Signal System

<table>
<thead>
<tr>
<th>Alternate trigger</th>
<th>CH1 trigger</th>
<th>Edge, Video</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH2 trigger</td>
<td>Edge, Video</td>
</tr>
</tbody>
</table>

Cymometer

<table>
<thead>
<tr>
<th>Cymometer (only for PDS7062T and PDS7102T)</th>
<th>Single source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single source</td>
</tr>
</tbody>
</table>
- When the triggering mode is edge triggering, it is a one channel Cymometer.
- When the triggering mode is alternating triggering, it is a two channel cymometer.
- When the triggering mode is video triggering, the cymometer will not work.

Measurement

<table>
<thead>
<tr>
<th>Cursor</th>
<th>(\Delta V) and (\Delta T) between cursors</th>
</tr>
</thead>
</table>

Automatic

- Peak-to-peak value, average value, root mean square value, frequency, period, \(V_{\text{max}}, V_{\text{min}}, V_{\text{top}}, V_{\text{base}}, V_{\text{amp}} \), overshoot, preshoot, rise time, fall time, +Width, −Width, +Duty, −Duty, \(\text{DelayA→B} \) and \(\text{DelayB→A} \)

Waveform Math

- +, −, Invert, FFT

Waveform Storage

- 4 waveforms

Lissajou’s Figure

- Bandwidth: Full bandwidth
- Phase difference: ±3 degrees

Communication Port

- USB1.1 or RS-232
General Specifications

Display

<table>
<thead>
<tr>
<th>Display Type</th>
<th>7.5” color liquid crystal display---- PDS5022S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.8” color liquid crystal display---- PDS6042S, PDS6062S</td>
</tr>
<tr>
<td></td>
<td>8” color liquid crystal display----PDS6062T, PDS7062T, PDS7102T</td>
</tr>
</tbody>
</table>

Display Resolution 640 (horizontal) × 480 (vertical) pixels

Display Color 256 colors---- PDS5022S, PDS6042S, PDS6062S
65536 colors, TFT screen----PDS6062T, PDS7062T, PDS7102T

Probe compensation

<table>
<thead>
<tr>
<th>Output voltage (typical)</th>
<th>5V, with the Peak-to-peak value $\geq 1M , \Omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (typical)</td>
<td>1KHz square wave</td>
</tr>
</tbody>
</table>

Power

<table>
<thead>
<tr>
<th>Supply</th>
<th>100-240 VACRMS, 50/60Hz, CAT II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>$<15W$</td>
</tr>
<tr>
<td>Fuse</td>
<td>1A, T class, 250V</td>
</tr>
<tr>
<td>Battery</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Environment

Temperature	Working temperature: 0 °C ~ 40 °C
	Storage temperature: -20 °C ~ +60 °C
Relative Humidity	$\leq 90\%$
Height	Operating: 3,000 m
	Non-operating: 15,000 m
Cooling Method	Natural convection

Mechanical Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>PDS5022S</th>
<th>PDS6042S</th>
<th>PDS6062T</th>
<th>PDS7062T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1.6kg</td>
<td>1.7kg</td>
<td>1.8kg</td>
<td>1.7kg</td>
</tr>
<tr>
<td>Dimension</td>
<td>350mm × 157mm × 103mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interval Period of calibration:

Perform self-calibration to verify that your instrument is operating properly. Self-calibration performs an internal self-alignment routine to optimize the signal path in the
oscilloscope. The routine uses internally generated signals to optimize circuits that affect channel sensitivity, offset and trigger parameters. Let the instrument to warm up for at least 30 minutes before performing self-calibration. You should perform self-calibration according to the following recommendations:

• Every 12 months or after 2000 hours of operation
• If the ambient temperature is > 10 °C from the calibration temperature
• If you want to maximize the measurement accuracy
• After experiencing abnormal operation.
• To verify proper operation after repairing
Appendix B: Package Contents

Standard Accessories:

- Passive probe: x 2,
- CD: x 1 (PC link application software).
- RS232 data line or USB data line: x 1
- Power line: x 1 (up to the standards of the country in which it is used.)
- User Manual: x 1

Options:

- Battery

Appendix C: Maintenance, Cleaning and Repairing

General Maintenance

Please don't store or put the instrument in the place where the liquid crystal display will be directly exposed to the sunlight for a long time.

Caution: The instrument or probe should not be stained with the spraying agent, liquid and solvent to avoid any damage to it.

Cleaning

Check the probe and instrument regularly according to their operating state. Clean the external surface of the instrument following the steps what shown as below:

1. Please wipe the dust from the instrument and probe surface with a soft cloth. Do not make any scuffing on the transparent LCD protection screen when clean the LCD screen.

2. Clean the instrument with a wet soft cloth not dripping water, during the period of which please pay attention to the disconnection of power. It is recommended to scrub with soft detergent or fresh water. Please don't apply any corrosive chemical cleaning agent to prevent the instrument or probe from damage.

 Warn: Before power on again for operation, it is required to confirm that the instrument has already been dried completely, avoiding any electrical short circuit or bodily injury resulting form the moisture.
Appendix D: Battery Using Guide

Charging the oscilloscope
The lithium battery maybe not be charged when delivery. Please charge the battery for 12 hours to make sure enough power to supply (the oscilloscope should be turned on during charging) to oscilloscope. The battery can supply power for 4 hours after being charged completely. There will have battery power indication show on the top of panel when oscilloscope power supplied by the battery. ▲, ▼, ◻, and ◼ imply for different power consumption and when ◼ shows it means the power can only supply for 5 minutes maximum.

Note:
To avoid superheat of battery during charging, the environment temperature is not allowed to exceed the permissible value given in technical specification.

Replacing the Lithium Battery Unit
It is usually not required to replace the battery unit. But when it is required to replace it, only qualified personnel can carry out this operation, and only use the same specification lithium battery.